
Venom2 Tutorial

Written by Karl Lam, Micro-Robotics Ltd

© 2018 Micro-Robotics Ltd

IContents

© 2018 Micro-Robotics Ltd

Table of Contents

Venom2 Tutorial 1

Getting Started 3

Part 1:Venom Language Tutorial 9

... 10Repeating and Deciding

... 16Variables and Expressions

... 29Printing

... 32Procedures

... 42Objects

... 48The Startup Procedure

... 53Your Development Environment

... 56Multitasking

... 63Developing an Application

... 64Debugging

... 67Errors and Exceptions

... 74Macros

... 77Conditional Compilation

... 79Optional parameters

... 80Further Expressions

... 90Further Objects

... 95Further Printing

... 98Further Multitasking

... 104Locking

... 114The End

Part 2:Object Tutorial 115

... 117Digital

... 120Analogue

... 122AlphaLCD

... 124Keypad

... 128NumberReader

... 131OnBoardLED

... 133String Objects

... 136Buffer

... 142Array

Venom2 TutorialII

© 2018 Micro-Robotics Ltd

... 145RealTimeClock

... 149DateTime

... 154Timer

... 156Stopwatch

... 157SerialPort

... 159OperatingSystem

... 163Creating new classes

... 190The End

Appendices 191

... 192A: Development Checklist

... 193B: How Do I ... ?

... 196C: Speed of Execution

... 197D: Robust Applications

... 201E: ASCII Character Set

... 204F: Optimisation

... 206G: Startup Sequence

... 207Not using VenomIDE

Index 213

1

© 2018 Micro-Robotics Ltd

Venom2 Tutorial
Written by Karl Lam, Micro-Robotics Ltd

Document D043 Version 2018 01 02

© 2018 Micro-Robotics Ltd

All rights reserved

WARNING: Users of Micro-Robotics Control Equipment should be aware of the possibility of
a system failure, and must consider the implications of such failure. Micro-Robotics Ltd. can
accept no responsibility for loss, injury, or damage resulting from the failure of our equipment.
Use of our products in applications where their failure to perform as specified could result in
injury or death is expressly forbidden.

Micro-Robotics Ltd.
The Old Maltings
135 Ditton Walk
Cambridge
CB5 8QB
Tel: +44 (0) 1223 523100
Fax: +44 (0) 1223 524242
sales@microrobotics.co.uk
www.microrobotics.co.uk

3

© 2018 Micro-Robotics Ltd

Getting Started
This section introduces you to the VenomIDE development system, and also to a little of the
Venom2 language.

If you can't or don't want to use VenomIDE, please start the tutorial here.

Getting started guide

The exact details of connecting your VM2 controller to your PC are given in the paper
document Getting Started Guide in the starter kit. Please refer to this now, if you haven't
already. The Getting Started Guide will take you as far as seeing the Venom startup message
in the Terminal window:

VM2 Control Computer running Venom2 at 72MHz
Version 2013 06 03
Copyright 2008-2013 Micro-Robotics Ltd.
Clear RAM?

Type Y – this tells the controller to clear its RAM – the memory where programs are held during
development.

You may need to click in the terminal window before it will accept any characters you
type.

The controller then creates a few default procedures for you; you will find out more about these
later:

Loading procedure startup... Procedure Defined
Loading procedure init... Procedure Defined
-->_

The flashing cursor, _, will be positioned just after the --> arrow. This arrow is called the
prompt and means Venom is waiting for your instructions.

At this stage you may want to make the IDE window bigger, and the terminal window
larger within it, so you can see more lines of text, and longer lines too.

Simple Commands

Try hitting the Enter key on the PC keyboard a few times. You will notice that Venom replies
with a new prompt on a new line. This is a quick way of checking that Venom is talking to you.

Now try typing the following (press Enter at the end of the line). Here, the bits in bold are
what you type, and the rest is Venom's response.

-->Print "hello"
hello-->

Venom responds to the command by printing the string you gave it back to the terminal window.

Now try the command below. Don't forget to type the dot between the two words.

4 Getting Started

© 2018 Micro-Robotics Ltd

If you make a mistake in your typing, then you can use Backspace () to remove the characters
you have entered.

-->led.On
-->

To see the effect of this command you will need to look at the small LED indicator on the
VM2 controller.

The LED will light up. If you repeat the command substituting the word Off for On, the LED
will be turned off.

Objects

An object is a part of the Venom language that will control a device in response to a fixed set of
messages. In the example above, led was the object responsible for controlling the LED
device on the controller. On was the message sent to the led object. The dot (.) tells Venom
that a message follows. Objects will be covered in much greater detail later. For now it is
enough to know what it looks like when an object is being used.

Incidentally Venom commands are not case sensitive, so you can use any combination of
UPPER and lower case letters when writing Venom code.

The Command Line

The text that you type in at the --> prompt is called the command line.

Errors

If you made any mistakes in the examples above, Venom probably issued an error message. In
case you haven't seen an error message yet, type in led..On. You will see:

-->led..on
 ^
Syntax Error: Expected message name
Command line not executed.
-->

Venom issued a Syntax Error message, meaning it didn't understand the command. The
offending line is listed together with a pointer to where Venom thinks the error is (the ^
character), and the reason Venom didn't like it.

Syntax errors, like the one above, will only show up when code is sent to the VM2. There is
another type of error that can occur: runtime errors. These will be dealt with later.

Simple Procedures

The commands shown above were very simple. Commands may be grouped together into
procedures that perform more complicated functions. Try the following line, taking care to
include the dots and spaces.

-->To blip led.On Wait 1000 led.Off End
Procedure defined
-->

The keywords To and End tell Venom that the commands in-between should be treated as a

5

© 2018 Micro-Robotics Ltd

single command (or procedure) called blip. Incidentally, the Wait 1000 command tells
Venom to do nothing for 1000 milliseconds.

Try issuing blip as a command:

-->blip
-->

The LED should turn on for one second then turn off again. The new prompt will only appear
once the procedure has finished.

Blip could also be issued as a command from within a procedure. The following procedure
'calls' blip once, waits for a second and then calls blip again. Try entering it and then typing
'double'.

-->To double blip Wait 1000 blip End

It is not necessary to enter procedures on a single line. The blip procedure could have been
entered as below, or in any form where the spaces are replaced by new line or tab characters -
i.e. any 'white space' is allowed as a separator.

-->To blip
02>led.On
03>Wait 1000
04>led.Off
05>End
Procedure Defined
-->

You will notice that the prompt is different during entry of the procedure. This tells you that
Venom will not act on the commands you type immediately, and also lists the line numbers of the
procedure.

Program files

Simple procedures may be typed in at the command line as shown above. When you want to
write a full program it is useful to be able to keep all your procedures together in one or more
files. This can be done using the text editor in the IDE. We have adopted the file extension .vnm

for Venom program files.

To create a Venom file follow these steps:

1. Create a new Venom file using the menu File New.

2. Give it a name by saving it: File Save As....

3. If you don't give the file an extension, it will be saved as a Venom file (.vnm), which is
what we need.

4. You may want to create a new folder somewhere on your PC to save the file into. You
can do this from within the Save As... dialogue.

5. Now type the code of one the procedures above into the Venom file. This is now your
Venom program file.

6. If you want your code to run as an application, define a procedure called main.

6 Getting Started

© 2018 Micro-Robotics Ltd

Example file

This is an example for the contents of your first program file; you can copy and paste this text
into your own file.

; Main is called at startup.
To main
 Print "Hello world", CR
 blip
End

;Blip the LED.
To blip
 led.On
 Wait 1000
 led.Off
End

Syntax highlighting

Notice that the text in your file is colour coded: this is Venom syntax highlighting. It allows you
to see the structure of a Venom program more easily by highlighting different elements of the
language with different styles. It can also show you when you have misspelled a Venom
keyword, or when you are trying to use a Venom reserved word for one of your own variable
names.

Downloading a file

Once you are happy with your program file, use Terminal Download (shortcut F7) to send it to
the terminal. This is equivalent to typing in the procedure, but much faster. Note that when you
download a file like this you don't see each individual line of the procedure - just a short report.

-->PROGRAM "New1.vnm" 0 $00001B9F 7
-->

You can now call any of your procedures just by typing their name at the command line as
before:

-->blip
-->

Or you can run your whole program by hitting F10 or clicking on the Run icon in VenomIDE.

Syntax errors during download

Any syntax errors in the code will be reported on the terminal window as the file downloads.

Each syntax error will indicate the filename and line number that the error occurred in - see the
line shown in bold below (it won't be bold in the terminal window):

7

© 2018 Micro-Robotics Ltd

-->PROGRAM "New1.vnm" 0 $00000F46 7
 led.on wait 1000 led..on
 ^
Syntax Error: Expected message name (new1.vnm line 2)
1 Syntax Error(s): procedure not defined.
End of file "new1.vnm"
1 error(s)
-->

Try introducing such an error into your program and downloading it... then try double clicking on
the line in the terminal window that lists the filename and line number (shown bold above)

Double clicking on any line in the terminal window that has a filename and a line number on it
takes you to that place in your program - so you can instantly see where your errors are coming
from - and then correct them.

Help

There are several sources of help available:

Help Files in CHM format

The firstly there is the the Venom Tutorial: that's what you are looking at now.

There are also other Help Files:

the Venom2 Help File, for help on the Venom2 Language

the VenomIDE Help File, for help on the VenomIDE development system.

All of these are available from within VenomIDE, in the menu Help Venom2 language help

...

You can also get help on a specific Venom keyword by placing the cursor on a word in the
editor, right-clicking and choosing

Help on:

Interrogating Venom

Another source of help is in Venom language itself: Venom has a simple on-board Help
command that allows you to interrogate the runtime system. It may not always have the
information you are looking for, but it can be useful. Try this:

-->Help led

It is the OnBoardLED. (Printing it may give more information)

Help will tell you information about the word you type after it - typically what type of thing it is -
and how to get more information.

In Venom, printing something will often give you information about it. For example, System is a

8 Getting Started

© 2018 Micro-Robotics Ltd

predefined object that represents the Venom operating system:

-->Print system
Source files:
 working.vnm
Symbol table: 76 bytes
11 Global variables
Heap: Total 1038336, Free 1035484 (Contig. 1035048), Used 2852.

SUMMARY

You have seen how to talk to Venom, issue commands, build simple procedures and
edit them.

You have seen how to use some of the basic features of the IDE to communicate with
the controller, write programs and download them.

What next?

You should now go on to read the next chapter of Venom language tutorial, Repeating and
Deciding.

Later, you might also like to learn more about the VenomIDE development tools by reading
about them in the VenomIDE Help File.

9

© 2018 Micro-Robotics Ltd

Part 1:Venom Language Tutorial
This part of the tutorial takes you through the features of the Venom programming language (as
distinct from the library of objects covered in Part 2).

Carry on

10 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Repeating and Deciding

It is often desirable for a command to be carried out several times or for it to be carried out only
if certain conditions are met. This is called Flow Control, and the language keywords that do
this are described in the following pages.

Repeating Commands: Repeat, Forever

Often it is useful to simply repeat a command or a set of commands – there are three 'constructs'
that do this: Repeat, Forever and Every.

Repeat is used to execute a command a pre-determined number of times. For example the
following line prints the string 5 times:

-->Repeat 5 Print "And again", CR
And again
And again
And again
And again
And again
-->

The keyword CR at the end of the Print command tells Print to send a Carriage Return after
the string.

Similarly Forever repeats a command forever.

-->Forever Print "And again", CR
And again
And again
And again

… (and so on) …

Stopping your program

Whenever Venom is executing a command, it may be asked to stop by pressing Ctrl-C on your
PC keyboard. The next example shows the effect of stopping a command:

-->Forever Print "And again", CR
And again
And again
And again

(user presses Ctrl-C)

11Repeating and Deciding

© 2018 Micro-Robotics Ltd

Runtime error 2: Escape via CTRL-C
in the command line.
-->

Escape – though not really an error – is handled as a runtime error by Venom as this allows it to
use all of the error handling features in the language.

Shortcuts

Note: you can hit Esc, F9, or use the BRK icon from within VenomIDE to achieve the same
action: Stopping your application code.

Timed Loops: Every

The Every construct is similar to Forever except that the command is executed periodically,
with a period specified in milliseconds. The following example prints the string once every
second:

-->Every 1000 Print "And again", CR
And again
And again
And again

(user presses Ctrl-C)

Runtime error 2: Escape via CTRL-C
in the command line.
-->

Again, the command had to be interrupted with Ctrl-C.

If the code inside the Every construct takes longer than the given period then Every will not
attempt to make up any lost time: that particular loop will just take longer; the next will be the
normal length.

Loop Count: Index, Index0

In all looping constructs, the keyword Index expresses the 'loop count'. For example, the
following prints the numbers 1 to 5.

-->Repeat 5 Print Index, CR
 1
 2
 3
 4
 5
-->

Note that the Index starts at 1 – there is another keyword called Index0 that starts at 0.

12 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Grouping Commands: []

In all the above examples, only one command is repeated. If more than one command is to be
repeated, they should be grouped into a 'block' of commands with the square bracket symbols [
and].

As far as the loop constructs are concerned, a block is just treated as a single command, so the
following repeats the printing and 'toggles' the LED 4 times:

-->Repeat 4 [Print "Toggling the LED" , CR led.Toggle]
Toggling the LED
Toggling the LED
Toggling the LED
Toggling the LED
-->

If the square brackets were not included, the printing would have been done 4 times but the
LED would only have been toggled once.

Making Decisions: If; Else

As well as repeating commands, it is also useful to be able to execute commands only if certain
conditions are met. This is achieved using the If construct.

The following example uses a variable called a, which we need to define using the Becomes-
equal-to symbol, :=. Variables are covered in greater detail later on. The < symbol means 'less
than'; these conditions are explained fully in the next chapter, but it is sufficient to say that the
condition is met if a is less than 30. If this is the case, then the LED is turned on.

a := 20
...
If a < 30 led.On

It is also possible to use If with Else so that one command is done if the condition is met, and
another if it is not. For example:

If a < 30 led.On Else led.Off

Finally, there is an optional keyword Then, which may be used to visually separate the
condition from the statement in an If construction.

If a < 30 Then led.On Else led.Off

Then is not often used, as Venom does not need it, and indenting your code will usually make
the structure clear to other programmers.

13Repeating and Deciding

© 2018 Micro-Robotics Ltd

Indentation

You will notice that all the above examples showed the whole of a looping or decision construct
on one line.

This isn't how they are normally written. More usually an indented format is used. This helps
you and others see the structure of the program more easily:

To dummy
 Forever
 [
 Repeat 5
 [
 If a < 30
 Print "Less"
 Else
 [
 Print "More"
 a := a - 1
]
]
]
End

Repeating Decisions: While & Do

The While construct repeats a command as long as a condition is met. Each time round the
While loop the condition is re-tested.

While not_done ;the condition
[
 do_something ;the commands
 do_more ; …
]

The Do … While construct is similar to While. However here the test is done at the end of
the loop rather than at the start. This means that the commands inside the loop are always
executed at least once.

Do
[
 do_something ;the commands
 do_more ; …
]
While not_done ;the condition

The keywords Index and Index0 are available in these loops, as with all loops.

14 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Multiple choice: Select Case

The Select Case construct allows one of a number of different actions to be taken
depending on the value of an integer selection value. In this example we assume a variable
called 'choice' has been defined.

Select Case choice
Case 1
[
 Print "Choice 1"
]
Case 2
[
 Print "The second choice"
]
Case 10,11
[
 Print "A larger number"
]
Case Else
[
 Print "Default action"
]

The Select construct looks at the integer selection value, and then executes only the code
associated with that particular Case. More than one case value may be associated with a bit of
code (as with Case 10,11 in the example above), and a default option may be specified with
Case Else.

Waiting

Often it is useful to wait for certain events. The Await command may be used for this – it just
waits for a condition to be met before carrying on.

Await my_button.Asserted

As the Await construct is waiting for a condition to be met while not actually running any other
code it is usually only used to wait for external events, or for signals from other tasks in a
multitasking application.

Finally the Wait command just waits for a given number of milliseconds. For example,

Wait 1000

just pauses execution for 1000 mS.

15Repeating and Deciding

© 2018 Micro-Robotics Ltd

Breaking out of Loops: Break

Any loop may be exited prematurely using the Break command. This simply breaks out of the
loop as soon as it is executed, and the code immediately after the loop is then run.

Forever
[
 Print Index
 If Index = 10
 Break
]
Print "Broken out!",CR

If loops are nested, Break will only break out of one level. To break out of more deeply
nested loops see Try

SUMMARY

A set of commands may be grouped into a single command block using the [and] symbols.

If and Else may be used to make decisions and conditionally execute commands.

Select Case … chooses one of many actions depending on a number.

Repeat may be used to repeat commands a predetermined number of times.

Forever repeats commands forever.

Every repeat commands in a timed loop.

While and Do ... While repeat commands as long as a condition is true.

Break will break out of any loop.

Await waits for a condition to become true before continuing.

Wait may be used to pause for a number of milliseconds.

16 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Variables and Expressions

A variable is a named bit of memory that can hold values that may change during the running of
a program. The first time a new variable name is seen by Venom some memory is reserved to
hold the value.

The value of a variable may be set using := (spoken as 'becomes equal to').

In the following example, a variable called counter is created and set to the value 1.

-->counter := 1
-->

A variable's value may be changed at any time to any other value.

A variable's value may be examined using the Print command, for example:

-->Print counter, CR
 1
-->

Variable Names

It is good programming practice to use meaningful names for the variables in your programs.
This makes it much easier for you to write the program in the first place, and is a great help
anyone who tries to read your code later.

Consider the following two procedures, which both do exactly the same job. One is clearly
easier to understand than the other.

To a (b,c)
 #Define f 3.14159
 Local d
 Local e
 Local g := b / 2
 d := f * (g^2)
 e := b * f * c
 Return d * 2 + e
End

To cylinder_surface_area (diameter , height)
 #Define Pi 3.14159
 Local circular_end
 Local curved_surface
 Local radius := diameter / 2
 circular_end := pi * (radius^2)
 curved_surface := diameter * pi * height
 Return circular_end * 2 + curved_surface
End

Note that both of these procedures compile down to exactly the same runtime code.

17Variables and Expressions

© 2018 Micro-Robotics Ltd

Variable names may contain up to 64 letters, digits and underscore _ characters. The name
may not start with a digit.

Variable names may not be the same as any Venom keyword or object type. Some examples
of both valid and invalid names are listed below:

Valid names Invalid names

water_temperature
output_control_2
a

word (WORD is a keyword)

var% (% is not allowed)

low byte (spaces are not allowed)

Style tider

Venom is not case-sensitive; you can write your code in any case you like. However we
recommend our standard capitalisation style, which we have tried to use throughout this tutorial.
VenomIDE can convert your files to our standard capitalisation using the Style Tidier: Edit

Style Tidier.

Listing Names

You can list the names of all the variables that Venom has seen by using List Word.

-->List WORD
Procedures:
startup init main monitor_in illustrate_locals search
Integers:

Floats:

Strings:

Pointers:

Objects (inc. 'Nil'):
system serial net led clock
Undefined:
sense_in counter o ilst any_value

Note that some of the objects displayed will have been automatically created by the startup
procedure (discussed later) regardless of whether they are required by the user's program. In
general, the items are listed in the order they were first seen. The Undefined names are words
that have been used in some way, but have not been assigned a value yet. After an application

18 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

has been downloaded, but before it has been run, many of the names will be in this section.

Integers and Floating-Point Numbers

The numbers we have used so far have been whole numbers (or 'integers'). These numbers are
adequate for many purposes, but they do have restrictions - integer values must be in the range -
2,147,483,648 to 2,147,483,647 and must be a whole number (not a fraction).

Venom can also use floating-point numbers (or 'floats'). For example our counter variable
may be set to a floating-point value:

-->counter := 1.0

Floating-point numbers in Venom are calculated and stored to the IEEE single precision
standard: a number range of around ±1.0E±38, and a precision of around 7 digits.

Constants

Constants are values that stay the same throughout the runtime of a program. Constants have
been used extensively in the examples so far: things like 1, 100, 2.134 and so on.

Numeric constants

Integer constants are numbers like these:

1
23
43435

They may have any value within the 32-bit integer range: -2,147,483,648 to 2,147,483,647.

Floating-point constants must start with a digit, but must also include either one decimal point
and/or one e or E to indicate a exponent. These are all floating-point values in Venom:

1.234
1e2
2E4
2.34e12

Logical or Boolean constants

In venom the values True and False are keywords that may be used to represent the logical
values of true and false.

True is an alias for the numeric value 1 and False is an alias for the numeric value 0.

-->Print True, False, CR
 1 0
-->

19Variables and Expressions

© 2018 Micro-Robotics Ltd

String constants

There are also string constants – these are bits of text that remain the same during the life of a
program, for example:

"This is a string constant"

String constants always appear within double quotation marks.

(Actually, there is another way to define string constants, usually used when you need to define a
large block of text - see Embedded text in the Venom2 Help File).

Named Constants

Just as it is very useful to give the variables in your program meaningful names, it is also useful to
give many of the constants in your program names too.

There are several reasons for this: firstly, it helps with understanding the intention behind your
code when you use a name:

Wait 60000
Wait ONE_MINUTE

Secondly, if the same constant appears throughout a program, and the value needs to be
changed, it need only be changed in one place.

Named constants may be created with #Define:

#Define ONE_MINUTE 60000
#define two_minutes (ONE_MINUTE * 2)

Actually, #Define may be used to give any piece of program text a name. A named piece of
text is called a 'macro'.

#Define LEDON led.on

Macros are dealt with in greater depth here.

Expressions

An expression is a bit of program code that calculates a result from one or more values using
operators.

Examples of values are: 32, 1.23, counter.

Examples of operators are: < > + - * / and so on.

20 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Arithmetic Operators

The standard arithmetic operations Add, Subtract, and Multiply are available. In Venom these
are +, - and *.

There are two forms of division in Venom: integer (Div) and floating point (/).

All symbols such as these are referred to as 'operators' since they operate on values. The
following are examples:

-->Print 3 * 2, CR
 6
-->Print 3 + 2, CR
 5
-->Print 3 + 2 * 4 , CR
 11
-->

Note that the final command is calculating 2 times 4, giving 8, and then 8 plus 3. This is due to
the 'precedence' of the operators, which determines in what order the operations should take
place. Precedence will be discussed in detail in the next section.

If either of the numbers being added, subtracted or multiplied is a float, then the result will also
be a float. For example:

-->Print 3.2 + 2, CR
 5.2000000
-->Print 6.7 * 5.8, CR
 38.860000
-->

This is called promotion, and happens automatically.

Division is slightly different – even if both numbers are integers, the result will always be a float.

-->Print 5 / 2, CR
 2.5000000
-->

If an integer result is required, the Div operator may be used – this always gives an integer, and
also requires integer values to work with.

-->Print 5 Div 2, CR
 2
-->

The operator Mod calculates the remainder after the division of two integers.

-->Print 57 Mod 9, CR
 3
-->

The 'Unary minus' operator negates the value it is placed before. For example:

21Variables and Expressions

© 2018 Micro-Robotics Ltd

-->a:=5
-->Print - a , CR
 -5
-->

The operator, Abs, gives the absolute value of the following number. The absolute value is the
magnitude or size of the value, and is always positive:

-->Print Abs -23, Abs 23, CR
 23 23
-->

Trig, Log and other functions

A useful set of trigonometric and exponential operators is also available:

Sin Cos Tan
Asin Acos Atan
Log Exp Sqrt

The trig functions operate in radians.

-->Print Sin 1.0
 0.841471-->

Exp gives 'e to the power of' a number. Log gives the natural logarithm of a number (that is

Loge). Sqrt gives the square root of a number.

Power operator

There is also a power operator, which raises the first operand to the power of the second: ^

Print 2^3
--> 8

This operator will give an integer result if both operands are integers. Note that it's precedence is
the same as *, / and Div.

Precedence

It was shown earlier that 3+2*4 is calculated as 11. This is because the multiplication is
calculated first. The order in which operators are calculated is determined by their 'precedence'
– the higher the precedence, the earlier they are calculated. When operators have the same
precedence they are calculated in left to right order.

A full table of precedence for the operators discussed in this chapter (including those yet to be
discussed) is given below. The operators with highest precedence are listed at the top –
operators on the same line have equal precedence.

22 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

()

• As Int As Float IsFalse

- Abs Inv ! Sin Cos Tan Asin Acos Atan Sqrt Exp
Log ? TypeOf

* / Div Mod ^

+ -

> < >= <= = <>

And Or Eor AndAlso OrElse

To change the order of calculation, parentheses (round brackets like these) may be used. For
example:

-->Print (3 + 2) * 4, CR
 20
-->

This gives 20, since 3+2 is calculated first, giving 5, which is then multiplied by 4.

Adding redundant parentheses will produce exactly the same runtime code, but can sometimes
add clarity to your source code.

Type Conversion Operators

Often it is useful to convert floats into integers or vice-versa. This can be done with the
operators As Int and As Float. Their operation is simple – they convert the preceding
number into an equivalent number of the type specified. For example:

-->Print 3 As Int, CR, 3.9347 As Int, CR
 3
 3
-->Print 3 As Float, CR, 3.9347 As Float, CR
 3.0000000
 3.9347000
-->

Note that As Int simply discards the fractional part of a number. There is no 'rounding up' to
the nearest integer, and negative numbers round towards zero.

Relational Operators

It is often useful to make a comparison between numbers: 'Are these numbers equal?', 'Is this
number bigger than that number?', and so on. This is done with relational operators.

Before discussing the operators themselves, it is important to appreciate the significance of their

23Variables and Expressions

© 2018 Micro-Robotics Ltd

results. All relational operators return either 1 or 0; 1 indicates that the relationship was true,
and 0 indicates that it was false.

The main relational operators are =, < and >. Of these, = tests whether two numbers are equal,
< tests whether the first is less than the second number, and > tests whether the first is greater
than the second number.

The following example illustrates their use (remember that the relationship is true if 1 is returned).
 Note that several numbers may be printed at once if separated by commas.

-->Print 3 = 3, 2 = 1, 1 < 2, 2 < 1 , 2 > 1, 1 > 2, CR
 1 0 1 0 1 0
-->

The remaining three relational operators (<>, <= and >=) are variations on the first three; <>
tests whether two numbers are not equal, <= tests whether the first number is less than or
equal to the second, and >= tests whether the first number is greater than or equal to the
second. While the origins of >= and <= are obvious, <> is a slightly odd symbol for 'not equal'
or 'different'.

There are some points worth noting about testing for equality (using = and <>).

Firstly, two numbers of different types (for example, integer and float) will never be regarded as
equal. This is illustrated in the next example:

-->Print 3.0 = 3, 3.0 <> 3, 2.0 = 3, 2.0 <> 3, CR
 0 1 0 1
-->

Secondly, it is not usually a good idea to rely on a test for equality between two floats – even
though they 'should' be equal, tiny errors that creep in due to the finite precision of the calculation
may cause them not to be precisely equal.

Boolean Operators

In the same way that it is possible to perform calculations with numbers, there are also
calculations that can be performed with true/false values (collectively termed 'Boolean', or
logical, values). The operators that do this are AndAlso, OrElse and IsFalse.

These operators make it possible to describe complex conditions:

If (val > threshold AndAlso error_flag IsFalse) OrElse override
 do_something

These returned values may be used by themselves, but are more often used as the condition part
of an If, While. Await or other similar statement.

The 'truth tables' of the Boolean operators are shown below:

24 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

False AndAlso False => False
False AndAlso True => False
True AndAlso False => False
True AndAlso True => True

False OrElse False => False
False OrElse True => True
True OrElse False => True
True OrElse True => True

False IsFalse => True
True IsFalse => False

In Venom, True and False are keywords which represent the values 1 and 0 respectively.

Note that the Boolean operators, as well as all Venom constructs that take a condition (e.g. If,
While, Await), will treat 0 as meaning False, but any non-zero number to mean True.

Lazy evaluation

Another property of the AndAlso and OrElse operators is that they don't actually evaluate
the second (right hand) expression if the left hand expression determines the result. For
example, if the first value given to AndAlso is false, there is no need to look at the second value
- the result has to be false. This is called 'lazy' or 'short circuited' evaluation and can be useful for
writing more efficient and clearer code.

Note that IsFalse is a 'postfix' operator - that is it comes after the expression it operates on.

Another look at Index

It was shown before that Index and Index0 could be used in a loop to represent the number
of times that the loop had repeated. However, only one value of Index is available at any time
– if one loop is inside another, the Index value for the outer loop is not available. To solve this
problem, the value of Index can be placed in a normal variable in the outside loop. This is
shown in the example below, which prints a multiplication table.

Repeat 3
[
 line_number := Index
 Repeat 3
 Print Index * line_number
 Print CR
]

with the result being:

 1 2 3
 2 4 6
 3 6 9

25Variables and Expressions

© 2018 Micro-Robotics Ltd

Changing the type of a variable

Venom allows you to change the type of a variable at will. For example you can define the
variable counter to be an integer first, and then a float later:

-->counter := 1
-->counter := 2.0123

It is also possible to change an object into a number, and vice-versa. Though this is sometimes
useful it can be the source of some confusion when it is first encountered. For example if an
analogue output channel is called 'level', then a short lapse of memory may cause you to type the
second line, intending the output level to become 128.

-->Make level Analogue ($30)
-->level := 128

Instead the object is replaced by an integer. If you later try to send a message to it, then an
error will be issued.

Help

The Help keyword can tell you what the type of a variable is:

-->Help level
It is an Integer
-->Make voltage Analogue ($31)
-->Help voltage
It is an Analogue object. Try PRINTing it for more info.
-->

TypeOf Operator

You can find the type of a variable within your program code using the TypeOf operator. This
will return an integer that represents the current type of a variable.

-->Print TypeOf 12
 0

Or more usefully, inside a program you might use this to check if x is a floating point number:

If TypeOf x = TypeOf 1.0
[
 ...
]

Sets of Data

There are three pre-defined object types in Venom that provide storage for sets of data: Array,
Buffer and File.

You can also create your own entirely new object types to hold sets of related data. This is dealt
with later in Creating new classes.

26 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Arrays are for holding fixed amounts of data, whereas Buffers can hold variable amounts of data.
 Arrays and Buffers also have other properties that are given in the table. Files are similar to
buffers, but can potentially hold much more data, and will retain their contents when the
controller is not powered. Access to files may be slower than buffers.

Array Buffer File

Dynamic size No Yes Yes

Contents initialised Yes No No

Data can be modified Yes Yes Yes

Mixed data types No Yes* No

Text handling Limited Yes No

Buffers, Arrays and Files can hold many kinds of data. All the data within a single object must
be of the same type*. The data types that may be stored are:

8, 16 or 32-bit Integers

Floating point numbers

Arrays of string constants

Buffers and files containing text

Arrays of Pointers

*Note that there is also a special kind of Buffer which can hold mixed data of any type,
including other objects.

Array and Buffer will be fully described in the Objects section, but for now here are some
examples of using them:

Constant Arrays

In your program file insert text like this and download it:

ARRAY some_data (Int , 10)
 1,
 2,
 3,
 4
End

On the command line type this:

27Variables and Expressions

© 2018 Micro-Robotics Ltd

-->Print some_data.Element (2)
 3-->

The Array we created was called some_data, and we indicated it should hold 32-bit-integer
data, and that it would hold 10 of these integers. We then specified what the first four of them
were, before End indicated the end of the definition of the Array.

We then read out one of these numbers using the Element message on the Array.

Note that Venom has a shortcut for .Element(n), which is .(n). We use this in the
example below.

-->Print some_data.(2)
 3-->

Variable Arrays

The example above created a constant array - the numbers held by it would not change while
the program was running.

You can create variable arrays where you can change the values held in the array, for example:

-->Make var_array Array(Int, 10, 1 , 2, 3)
-->var_array.(0) := 12

This makes an array of 10 32-bit numbers, and initialises them to 1, 2, 3, 3 ... , then we change
the very first element to be 12.

Or you can use this:

-->var_array := some_data.Copy

This makes a variable array with contents initialised to those of the constant array we saw
before.

Buffer

Buffers are different to arrays. Here we make a Buffer that takes 32-bit integers, put a couple of
numbers into it, then print one of them:

-->Make buff Buffer(Int)
-->buff.Put(1)
-->buff.Put(2)
-->Print buff.(1)
 2-->

Files

Files are described fully in the Venom2 Help File.

SUMMARY

Numbers may be stored in variables using the := symbol.

There are two types of number – integers (whole numbers) and floats, which are capable of
holding 'real' numbers, i.e. those with a decimal point.

28 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

The operators +, - and * are used to add, subtract and multiply numbers.

Division using / always gives a floating point result and Div always gives an integer.

The operators =, <, >, <=, >= and <> may be used to make comparisons between numbers
giving a Boolean result (1 for true, or 0 for false).

The operators As Int and As Float convert the preceding number into an integer or a
float respectively.

The operators AndAlso, OrElse and IsFalse may be used to manipulate logical (or
Boolean) values.

The order in which all of the above operators are calculated is determined by their precedence
– high precedence operators are calculated before low ones.

You can store sets of constant or variable data in Arrays, Buffers and Files.

29Printing

© 2018 Micro-Robotics Ltd

Printing

The Print command has been introduced already for printing numbers. It actually has much more
flexibility.

A Print command consists of the Print keyword followed by a 'print list', which is a list of items
separated by commas. Each print item may be an expression, some text, or one of several
special printing keywords.

(Note: there is also a method of printing very similar to C's printf() function: the PrintF message.)

Strings

It is often useful to include some text (a 'string' of letters) in the print list. You do this by
enclosing it in double quotes. For example:

-->Print "The counter is ", counter, CR
The counter is 1
-->

Print Keywords

There are several special print keywords that may be included in a print list.

CR, carriage return, starts a new line.

BEEP will make the terminal beep. This is useful for attracting attention during debugging, when
a terminal is attached, for example:

Print BEEP, "An error has occurred", CR

Print CHR is used for printing particular characters on the terminal screen. It is followed by a
value: the ASCII code of the character to be printed. The following example displays the whole
alphabet by printing characters 65 to 90. A full list of ASCII character codes is available.

Example

-->Repeat 26 Print CHR 65+Index0 Print CR
ABCDEFGHIJKLMNOPQRSTUVWXYZ
-->

Printing Integers

The colon operator (:) may be used to alter the way in which integers are printed. It is placed
after the expression to be printed and is then followed by an integer value. This combination of
colon and value is termed a 'format specifier'. In this case it specifies how many characters
should be used to print the expression – the 'field width'. The following example prints the results
from a couple of variables (assumed to be integers, and defined elsewhere) called timeValue

30 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

and random.

-->Repeat 4 Print Index:2, timeValue, random:10, CR
 1 14082 14627625
 2 63173 2363283
 3 50987 47844170
 4 38904 37278678
-->

Note that timeValue is being printed in the default field width of 6 characters. If a number is too
large to print in its allocated width, it will use as many characters as it needs.

If a negative field width is specified, then the number will be printed with zeros before it so that it
always fills its width.

-->Print 10 : -4 , CR
0010
-->

Printing Floats

There may be up to three colon (:) format specifiers following a floating-point expression. The
first specifies the total field width and operates as for integers.

If only one colon is used, a general floating point print format finds a sensible way of displaying
the value.

-->print 1.2, 0.000000012, " ",1200000000.0,cr
 1.2 1.2e-08 1200000047.7
-->

The 7-digit precision in floats is showing in the third number.

If there are two colon format specifiers, the number of digits after the decimal point may be
specified. The first colon specifies the total field width, and the second specifies the number of
decimal places. Again, a number that does not fit will simply use as many characters as are
needed.

-->Print 12.718281:15:5, CR, 12.718281:8:4, CR, 12.718281:3:3,
CR
 12.71828
 12.7183
12.718
-->

If there are three colon format specifiers, the number is printed in 'scientific' format – which is the
format that is used normally when a number is either too large or too small to be printed as usual.
 The first number specifies the total field width as always; the second specifies the number of
decimal places; and the third specifies that the 'E' format be used. The third value is not currently

31Printing

© 2018 Micro-Robotics Ltd

used. If the number is too wide, it will use as many characters as required.

-->Print 12.718281:15:5:0, CR, 12.718281:8:4:0, CR,
12.718281:3:3:4, CR
 1.27183E+01
1.2718E+01
1.272E+01
-->

Printing a Fragment of a String

You can use the : operator to specify how a string is to be printed. :n will print the leftmost n
characters from a string. If the number is negative, you get the rightmost n characters:

-->Repeat 10 Print "[","abcdefghij":Index0-5,"]"
[fghij][ghij][hij][ij][j][][a][ab][abc][abcd]-->

Using two colon operators allows you to print any portion of a string you wish to, and,
additionally, will pad out the printed portion with space characters to a required width. This
allows you both to select portions of the string and to implement scrolling text.

The first colon specifies where to start printing within the string, and the second specifies how
many characters to print. If the start position is negative, or more characters are requested than
are in the string, then space characters are printed.

-->Repeat 10 Print "[" , "abcdefghij" :Index0-5:10 , "]" , CR
[abcde]
[abcdef]
[abcdefg]
[abcdefgh]
[abcdefghi]
[abcdefghij]
[bcdefghij]
[cdefghij]
[defghij]
[efghij]
-->

SUMMARY

There are a number of special keywords for printing, such as CR, CHR.

Numbers may be formatted using the colon (:) operator. In its simplest form this sets the
field width of the printed number.

Strings may be partially printed to achieve special effects.

32 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Procedures

Procedures were first introduced in the Getting Started section. This chapter explains more fully
what procedures can do and how to create them.

A procedure is a set of commands that are grouped together and given a name. Some
procedures will be created to perform low-level (i.e. detailed) aspects of an application, like
turning outputs on and off and recording values. Other procedures will cover high-level aspects
of the application, calling on lower level procedures to perform the detailed operation.

If meaningful names are given to procedures, then the higher-level procedures tend to read like
an English description of the steps involved in solving a problem. For example, the top-level
procedure of a Venom application, which controls a furnace's temperature cycle and logs the
actual temperature, might look like the following. Don't worry about understanding the detail of
the example.

To control_the_furnace
 initialise_the_variables
 Start temperature_log
 control_the_temperature
End

The lower-level procedures might look like this:

33Procedures

© 2018 Micro-Robotics Ltd

To initialise_the_variables
 Make logged_values Buffer
 rate_up := 1.435E-5
 rate_down := 1.435E-5
 minutes_hold := 120
End

To temperature_log
 Every 60 * 1000
 [
 logged_values . Put (temperature)
]
End

To control_the_temperature
 AutoDestruct
 Local timer1 := New Stopwatch
 Local timer2 := New Timer(1000 * 60 * minutes_hold)

 timer1 . Reset
 While temperature < final_temp_1
 [
 demand_temperature (timer1 . Time * rate_up)
]
 timer2 . Go
 Await timer2 . Done
 timer2.Period := 1000 * 60 * 10
 While temperature > final_temp_2
 [
 demand_temperature (timer2 . Time * rate_down)
]
End

These lower-level procedures call on other procedures lower than themselves, temperature and
demand_temperature which, for compactness, are not listed here.

This division of processing into higher- and lower-level procedures is a large part of what
structured programming is about. Structured programs tend to be quicker to develop, easier
to understand and faster to debug.

Defining Simple Procedures

The To keyword starts the definition of a procedure and is always followed by the name of the
procedure. The body of the procedure then follows as a number of commands. Finally, the
procedure definition is finished with the End keyword.

The following procedure monitors a proximity sensor, sense_in, and when an object is

34 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

detected (the sensor goes from False to True), it adds one to the variable counter.

To monitor_in
 Forever
 [
 Await sense_in.Asserted = False
 Await sense_in.Asserted = True
 counter := counter + 1
]
End

The best way to create your own procedures is to write them into your venom code file, then
download the file using F7, etc.

We dealt with this earlier.

Procedure Names

Procedure names take exactly the same form as variable names. See Variables and Expressions
.

Calling Procedures

A procedure is executed, or 'called', by using its name as if it were a command, for example by
putting its name in another procedure:

To reset_then_monitor
 counter := 0
 monitor_in
End

Another example is given below.

To log_temperatures
 Forever
 [
 log_value.Put(measure_temperature)
]
End

Here we assume measure_temperature is a procedure that reads an analogue input and
returns a calibrated temperature value; returning values from procedures is explained below.
Log_value is a Buffer that accumulates data entries. See the second part of this manual for
more information on Buffers.

Beware of using procedure calls in the place of the 'GOTO' commands of some early languages.
 If you try the following example, the code will stop within a few seconds. This is because each
time a procedure is called, a small amount of 'stack' memory is taken. This memory is returned
to the system when the procedure ends. If a procedure repeatedly calls itself, then small

35Procedures

© 2018 Micro-Robotics Ltd

amounts of memory are continually taken but not returned.

To flash_led
 led.Toggle
 Wait 100
 flash_led ; Incorrect usage!
End

When a procedure calls itself, it is termed 'recursion'. This is sometimes useful; it will be dealt
with later.

Comments

Comments may be inserted into your Venom code anywhere using the semi-colon (;)
character. All text following the semi-colon, and before the next carriage-return, is treated as
comment and ignored by the Venom compiler.

Comments in code are used to explain to someone else (and even to yourself) what the code is
doing and why. This is necessary at both high and low levels, i.e. for detailed descriptions of
what is going on, and also for the broad outlines of the application.

;This procedure reads the thermistor input,
;converts it to degrees C and returns it.
To read_temperature
 read_an ; Read the analogue to digital converter
 ...
End

Commenting code well is regarded as a very important part of good software engineering
practice. Comments are essential for maintaining code, that is, when correcting errors (bugs) in
the code, or when adding new functions.

It is widely recognised that after just a few months most people can't remember how their code
works, or why they wrote it the way they did.

For particularly hard-to-solve problems it's a good idea to write down the thought processes
behind a particular bit of code. Comments are the way to do this.

Procedures are not forgotten

If you are using a controller with a Battery-backed RAM then it won't lose any of the
procedures that you have downloaded or typed in, even when it is turned off. Try entering a
procedure and then turning the controller off. When you turn it on again, make sure that you
answer 'N' to the Clear Memory question. Your procedure will still be in the controller if you
type List All.

Note, however, that the values of all variables are lost over a power cycle. Your program
should initialise these each time it runs.

36 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

No battery

If you are using a controller with no battery-backed RAM, then it will need the procedures
loading again if the power goes off.

Protected Application Area

Your procedures should only be stored in RAM during software development. When your
software development is complete you should 'Protect' your code in the controller's Protected
Application Area (in Flash memory), where it is safer from accidental loss.

Backup your source code

You should also make sure that you have your source code (the code in your Venom program
files) put somewhere safe - where it is safe from loss and where you can find it when you need it.
You can't get it back out of the VM2!

Passing Information to Procedures: Parameters

To enable a procedure to accept information, certain variables – called parameters – can be set
up to receive the information when the procedure is called. The parameter names are given after
the procedure name. They must be enclosed in parentheses () and separated by commas or
spaces. The values of the parameters will be set to the values given to the procedure when it is
called. For example, the following procedure prints the results of Div and Mod on the two
numbers given. The parameters are named a and b.

To div_and_mod(a,b)
 Print a Div b, a Mod b, CR
End

This procedure is called as before except that the values of the parameters must be given (again
separated by commas or spaces and enclosed in brackets):

-->div_and_mod(10,3)
 3 1
-->

When called as above, the parameters a and b in the procedure will be set to 10 and 3
respectively.

Formally, parameters in Venom are passed by value, rather than passed by reference. If you
want to pass by reference, you can use pointers. See Pointer Expressions.

37Procedures

© 2018 Micro-Robotics Ltd

Procedures that Return Information

Procedures that return information (sometimes called functions) use the Return command.
Return is always followed by an expression. When Return is encountered, the expression is
calculated and the resulting value is immediately passed back to the code that called the
procedure.

For example the following procedure returns a calibrated temperature:

To measure_temperature
 Return (thermometer.Value - 12) / 3
End

Note that the expression will produce a float, and so a float is returned. The procedure's
returned value may be displayed (and formatted) using the Print command:

-->Print measure_temperature:8:2, CR
 22.67
-->

Often procedures will both accept and return information. The following procedure takes two
numbers as parameters and returns the larger of the two:

To greater(x,y)
 If x > y
 Return x
 Else
 Return y
End

It is called in exactly the same way as other procedures with parameters:

-->Print greater(1,2), greater(319,122), greater(117,980), CR
 2 319 980
-->

Exiting Procedures

A procedure is normally exited when the last statement has been executed. Control then returns
to whatever called the procedure. However a procedure may be left before End by using
Return. Return will exit a procedure immediately, as well as perform its other function of
returning a value. If you don’t need a value to be returned, just use Return 0.

38 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

To proc
 ...
 If x = 12
 Return 0
 ...
End

Local Variables

So far, apart from parameters, all the variables we have been dealing with have been 'global' –
that is they are 'visible' from any procedure or the command line. Often it is desirable to have a
set of variables that are only visible from one procedure. These are called local variables.

Local variables are set up using the Local command. The following procedure is a functionally
identical version of measure_temperature shown before, but it uses a local variable called
int_temp (short for 'integer temperature'):

To measure_temperature
 Local int_temp
 int_temp := thermometer.Value
 Return (int_temp - 12) / 3
End

Nothing except the procedure measure_temperature may use or even 'see' the local variable
int_temp. If there is a global variable with the same name, it will be ignored inside the
measure_temperature procedure. This feature is called overriding. Local names
automatically override global names.

Local variables are very important to good programming. They allow programmers to be
confident about which bits of code are accessing which data.

The Lifetime of Local Variables

Local variables are created anew every time a procedure is called, and are lost forever when the
procedure finishes. They may be initialised to any value, either when they are created, or later.

The following procedure illustrates a variety of ways to declare and initialise local variables:

To illustrate_locals
 Local a
 Local b
 Local c,d,e,f
 Local g := 12, h := 13 * g + any_value
 a := 11
 b := 10
End

If you don't initialise a local variable when it is first defined, it is given the default value of integer
zero.

39Procedures

© 2018 Micro-Robotics Ltd

Local variables must always be defined at the start of a procedure, before any other lines of
code.

Recursion

Procedures may be called recursively. That is, a procedure may call itself, directly or indirectly.
 This technique is not often used in control applications, but is included here for completeness.

Recursion sometimes gives an elegant solution to some problems but you will probably never
need to use it in Venom.

Trivial recursion

A rather trivial example of recursion is:

To recursive_procedure
 recursive_procedure
End

Local variables are on the stack

Whenever a procedure is called, it allocates some stack memory in which to store its return
address and the values of its local variables (among other things). When a procedure is called
recursively (or if it is called by several different tasks), each procedure call is termed an 'instance'
of that procedure.

Even if there are many instances of a procedure, they will each have their own set of values for
the local variables. If they don't affect any global variables or any external device then each
instance of the procedure is entirely independent.

Example of using recursion

For example, the procedure below will find a given value in any Buffer object that contains a set
of unique values in ascending order. It does this by considering the whole Buffer and then
determining whether the value is in the upper or lower half. It then calls itself, this time giving half
the range. It continues until a value is found, in which case all the procedures finish one after the
other.

Note that when there are only two or less values to be searched, the procedure no longer needs
to call itself. Recursive procedures must always have a way out like this, otherwise they will
continue calling themselves until the stack is used up.

40 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

To search(buf,val,lo,hi)
 Local middle,result
 Print "Searching from ", lo, " to ", hi, CR
 middle := (lo + hi) Div 2
 If (hi - lo) < 2
 [
 If buf.Element(lo) = val
 Return lo
 If buf.Element(hi) = val
 Return hi
 Return 0
]
 If buf.Element(middle) < val
 result := search(buf,val,middle,hi)
 Else
 result := search(buf,val,lo,middle)
 Print "Returning from ", lo, " to ", hi, " with ", result, CR
 Return result
End

Here we call the search procedure on a buffer we've called sorted_buffer: Two Print
commands show the recursive procedure calls working:

-->search(sorted_buffer,1225,0,36)
Searching from 0 to 36
Searching from 18 to 36
Searching from 27 to 36
Searching from 31 to 36
Searching from 33 to 36
Searching from 33 to 34
Returning from 33 to 36 with 34
Returning from 31 to 36 with 34
Returning from 27 to 36 with 34
Returning from 18 to 36 with 34
Returning from 0 to 36 with 34
-->

Listing Procedures

You cannot list the full source of a procedure back as the compiler has translated it into a
completely different form. If you attempt to list a procedure it will give you a short summary of
the compiled code:

41Procedures

© 2018 Micro-Robotics Ltd

-->list search
;To search(buf,val,lo,hi)
; Local middle,result
; No source list [248 bytes @$64000a18]
;End
-->

The exception to this is the startup procedure. This lists back its default text only – to allow you
to see how it operates or to copy it so you can change it.

The master copy of your code should be in the files you create and download.

Deleting Procedures

Normally you won't have to delete any procedures - VenomIDE is set up to do this for you
automatically - though you can change this setting it is normally best left as it is.

Delete

Rarely you might need to use the Delete command to delete an individual procedure. For
example:

-->Delete monitor_in
-->

Predefined Procedures

Venom predefines three procedures when its memory is cleared. The three procedures are
called startup and init. They make it easy for you to start programming your application.
They are explained in detail later.

SUMMARY

Procedures are defined with To and End.

Procedures are retained while the power is off.

Information may be sent to a procedure in parameters.

A result may be returned from the procedure with Return.

A procedure exits immediately on a Return command.

Procedures may set up local variables with Local. These variables are private to each
procedure and cannot be accessed from elsewhere.

Delete may be used to delete a procedure from memory.

42 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Objects

So far this manual has used objects without really explaining what they are. By seeing them used
in context you will have picked up much of the basic information about them. This chapter will
give a fuller definition of objects.

Object orientation allows 'bits of code' (programs) to be treated a bit like off-the-shelf electronic
components.

In Venom, objects are used to represent actual devices in the real world, such as a heater
connected to a digital I/O pin, or a thermometer connected to an analogue input pin. Objects do
the job of device drivers in other languages.

In order to make things happen, like reading an analogue value or turning on a digital output, the
object is sent messages.

In previous chapters we saw messages sent to objects in the commands:

led.on

and

Print thermometer.Value

What we did not cover was how to define these objects in the first place, or the range of
messages that you could send them.

Creating Objects

Make

Objects may be created with the Make command.

The example below shows a Digital object being created to control a heater using one of your
controller's digital channels.

Make heater Digital($2F, 1)

The Make command is followed by a variable name, in this case heater, and then by the type
of object required, in this case Digital. Two parameters are also supplied:

1. '$2F' is the VM2 channel number that the Digital object will control.

2. '1' means make it an output rather than an input - some digital channels need to be told
this when they are created.

Important Conceptual Note: heater is a variable that now refers to, the Digital object.

This concept will become important if you start to do more complex things with objects.

43Objects

© 2018 Micro-Robotics Ltd

Other examples

This example shows the creation of an object to read the temperature sensor used in previous
examples:

Make thermometer Analogue($30)

In this case thermometer refers to an Analogue object that reads channel $30.

It is advisable to use descriptive names for objects, even at the expense of more typing*, since
the meaning of short names is easily forgotten (and may be a complete mystery to someone
else). For example, some other objects could be created as follows:

Make display AlphaLCD (20,2,0)
Make buzzer Digital (129)

Part 2 of this manual contains detailed information about the various types of object and how
they function.

*Note: VenomIDE2 has an autocompletion function that will complete a partially typed
variable name from a list of names you have used before.

When to create Objects

It is possible to create objects from the command line. This is fine when exploring the language,
or when trying out something new. However, when it comes to writing a real application, most
objects are normally created immediately after the controller is turned on, by convention in a
procedure called init

There are several reasons for this:

Objects are not retained over reset or power down, and so must be re-created before a
program may use them

It is good if most of the object definitions are in the same place in the program listing, for
easy maintenance of the code

All the memory that is going to be taken by objects will be taken early on, which makes
programs easier to debug

Objects should not be defined more than once, and this is easy to ensure if all the
definitions are in one place

There are sometimes circumstances where you will want to create objects 'dynamically'. This
requires special care and is covered in Creating Temporary Objects.

44 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

The Startup Procedure

There is always a procedure called startup in Venom. A default startup procedure is created by
Venom. Startup tells the controller what to do at power-on.

The led object used in the examples in previous chapters is defined in the default startup
procedure, along with several other useful objects. If you need to see the code of the default
startup procedure, then use List:

-->List startup

The text of the DEFAULT startup procedure:
TO startup
 MAKE system OperatingSystem
 system.ErrorAction := NEW Digital($20).Asserted IsFalse
 MAKE serial SerialPort(115200,1,1)
 MAKE net I2Cbus
 MAKE led OnBoardLED
 MAKE clock RealTimeClock
 IF system.Runmode
 [led.Flash($80)
 init
 main
 led.Flash(0)
]
END
-->

Notice startup calls two procedures, init and main.

You have to write init and main yourself. You can re-define startup, but it's usually better to
leave it as it is.

The init procedure is the best place to put all your Make commands, as then they will be reliably
executed at startup, when power is applied to the controller. The main procedure is the best
place to put your main application code.

The startup procedure has a chapter all to itself, later on in this tutorial.

Using Objects

It has been shown that objects may be sent messages by placing a dot (.) after the object
name, and before the message name. For example, the following two commands send 'On' and
'Off' to the Digital object named heater.

45Objects

© 2018 Micro-Robotics Ltd

-->heater.On
-->heater.Off
-->

Similarly the command below can be used to read a thermometer connected to an analogue
input object.
-->thermometer.Value
-->

However, nothing appears to happen because the 'result' was not used. To examine the result,
the Print command could be used. For example, to print the value of thermometer, type the
following:

-->Print thermometer.Value, CR
 46
-->

Thermometer.Value is simply an expression, the value of which may be assigned to variables, or
used in further expressions, for example:

a := thermometer.Value
b := thermometer.Value * 10 / 2.546

Message Parameters

Some messages take parameters, just like procedures. An example of this is the Flash message
to the led object. Try the following line:

-->led.Flash($A0)
-->

The message Flash($A0) sets the LED on your controller flashing around twice per second.
(Many other flash patterns are possible - see here for more details)

Active Variables

Some messages are called 'active variables'. They may be both set and read, just like a normal
variable. An example of this is the message Asserted, understood by Digital objects,
among others. If heater is a digital object, then setting heater.Asserted to True or
False will turn the heater on or off respectively:

-->heater.Asserted := True
-->

Reading heater.Asserted will return True or False depending on whether the heater is
currently on or off:

-->Print heater.Asserted
 1-->

(Remember True has the value 1)

46 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

What Objects are available?

In Venom, there is a set of built-in object types. The exact definition of each object type, and of
the messages it responds to, is given in the Venom2 Help File.

A less formal description of how to use a selection of these built-in objects is given in Part 2 of
this tutorial.

User-defined Classes

Venom also allows you to define your own types of objects - see Creating new classes.

The I2C Bus

One particular object will be keep getting a mention, so it's worth introducing it at this point.
This is the I2CBus object. The default startup procedure defines one for you called net. The I
2C bus is an industry-standard bus for communication at the 'chip level'. Literally it is the Inter-

Integrated-Circuit Bus. The I2C bus allows Venom controllers to connect to a variety of ICs
that provide useful functions additional to those on the main controller, including:

Digital I/O

Analogue I/O

LCDs

Touchscreens

Keypads

Removing Objects

Any object created with Make may be removed, if it is no longer required, by sending it a Die
message:

Heater.Die

In general most applications will not need to use Die as there is rarely a need to remove objects
you have defined.

However, Die may be useful during development, or in applications that use objects in a dynamic
way, creating them when they are needed, and destroying them when they are no longer of
required.

47Objects

© 2018 Micro-Robotics Ltd

Trouble shooting

It is easy in Venom to change the type of a variable. This can sometimes cause confusion if you
accidentally change an object into a number. See Changing the type of a variable for more
information.

Make a Analogue ($30)
...
a := 129

Here we changed a from referring to an Analogue object into the integer value 129.

What was probably meant was this:
Make a Analogue ($30)
...
a.Value := 129

SUMMARY

Objects may be created with the Make command.

It is good to refer to objects with meaningful names.

Messages are sent to objects by placing a dot after the object name and before the message
name.

Objects may be removed by sending them a Die message - but this is not usually needed.

48 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

The Startup Procedure

The startup procedure is one of the most important parts of a Venom application program. It
determines what the Venom application does when it is first powered on.

The default startup procedure

There is a default startup procedure that Venom creates whenever memory is cleared. This
procedure makes various objects that it is useful to have predefined, including the serial
connection to allow programming. The default startup procedure is listed below. You can
create a listing of it by typing List startup at the command line.

The text of the DEFAULT startup procedure:
TO startup
 MAKE system OperatingSystem
 system.ErrorAction := NEW Digital($20).Asserted IsFalse
 MAKE serial SerialPort(115200,1,1)
 MAKE net I2Cbus
 MAKE led OnBoardLED
 MAKE clock RealTimeClock
 IF system.Runmode
 [led.Flash($80)
 init
 main
 led.Flash(0)
]
END

Notice that near the end of the startup procedure two procedures (called init and main) are
called. Your application will need to define these.

Init is intended for all your Make statements and other initialisation code.

Main is the code that runs your application.

Try creating your own 'main' procedure in your venom code file and download it (you can hit F7

):

To main
 Print Hello world”,CR
End

Now type run at the command line (or use F10)

-->Run
Hello world
-->

Run tells the controller to behave as if it had just been powered on with the Program/Run Switch

49The Startup Procedure

© 2018 Micro-Robotics Ltd

in Run mode. Run is a simple way of testing the startup behaviour of your application.

You can create your own the init procedure in a similar way (don't forget to download it).

To init
 Print "Init is before main",CR
End

Now run does this:

-->Run
Init is before main
Hello world
-->

Notice, in the default startup, that init and main are only run if controller is in Run mode. In
Program mode, only the basic objects are made.

The default startup procedure may be altered but it is usually best left the way it is.

Putting startup code in your code file

You might want to list out and then copy the default startup procedure to your code file so you
(and VenomIDE) can see it. Don't copy the text above as it may be out of date.

Program mode

Up until this point in the tutorial you have been using Venom solely in Program mode (Program
mode is used for developing applications).

Whenever you power up your controller in Program mode, you will see the Clear Memory
message:

VM2 Control Computer running Venom2 at 72MHz
Version 2011 02 10
Copyright 2008-2011 Micro-Robotics Ltd.
Clear RAM?

You can reply to the question in two ways:

Y (Yes) means go ahead and clear the memory. Everything in the controller's RAM will
be removed, and you will have a 'clean' controller to start application development.
Venom defines the default procedures startup and init, and then calls startup.

N (No) means leave all the procedures you have defined in the controller's RAM, ready
for you to continue developing. The startup procedure is run, though it may not do
much, as the controller is in Program mode.

50 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Run mode

Run mode is used when you have finished developing your code and want to run it for real in its
intended environment. Run mode is entered when Venom powers up with the Program/Run
switch in the Run position.

Copy to Flash

If your application code hasn't yet been copied to Flash (using the command Protect(1))
then Venom will ask at the terminal if you want to do this.

If you don't allow that then your application will not run. This is a safety feature, as too many
Venom programs had been released into the field with the application code held only in battery
backed SRAM, which later stopped working when they lost their program.

Run mode startup sequence

In Run mode, the startup procedure is called which then calls your init and main to run your
application.

Run mode emulation

As mentioned before, Run mode may be emulated from Program mode by typing Run at the
command line, or hitting F10 from VenomIDE.

Don't let your application end

You may have noticed that the default startup procedure, and the altered init and main above,
terminated by showing the command line prompt (-->).

The prompt is always issued when the main task runs out of things to do.

Most real applications, however, require the controller to carry on doing its job forever (or at
least until power is removed). Thus your application code should normally enter some sort of
infinite loop and never terminate.

If you do see a command line prompt when you run your final application, then it is likely that
you haven't written your code correctly.

Example Init and Main

Here the procedures init and main have been redefined from their defaults to run a trivial
application that rattles a relay 10 times a second. Startup has been left unaltered.

51The Startup Procedure

© 2018 Micro-Robotics Ltd

To init
 Make relay Digital(128)
End

To main
 Every 100
 [
 relay . Toggle
]
End

More on the LED

The LED on the controller may be used to indicate information to you, the developer, and later,
to the end-user or person maintaining the equipment.

The behaviour of the LED may be altered by your application program, but it also has some
default behaviour.

Program mode

In Program mode, the LED will be on continuously while at the Clear Memory prompt. Thus if
the LED is seen to be on, it is likely that a) the controller has power, and b) it has been left in
Program mode.

After you have responded to the Clear Memory prompt, the LED is turned off, though if you
alter the startup procedure (not recommended) it may then do anything else.

Run mode

In Run mode, the LED is programmed (by the default startup) to flash approximately once every
second. Your application can later alter its behaviour to be anything you like, to indicate
problems or other information.

You are recommended to use the 'LED on continuously' signal to indicate a controller that is
stuck in Program mode and not use it for other purposes.

SUMMARY

The procedure startup determines Venom's actions at power-on.

Venom has three default procedures – startup, init and main –which are created when memory
is cleared.

Init and main should be redefined to suit your application. Startup is usually best left as it is.

52 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

The Program mode switch determines whether Venom should run your application, or issue
the Clear Memory message and command line prompt.

The LED may be used to indicate the operational state of the controller.

53Your Development Environment

© 2018 Micro-Robotics Ltd

Your Development Environment

Right at the start if this tutorial you may have seen how to create a Venom code file and
download it into the VM2.

If you don't remember this then you can revisit it.

Running your application

You can run your application by typing Run at the command line.

-->Run

Alternatively you can click on the Run icon (), or hit the function key F10 (both of these simply
send the command Run to the command line).

Run at power on

When you application is finished and deployed in the field you will want the controller to run your
program immediately, every time the power comes on.

To make it do this, you will first need to copy your application from RAM into the more secure
Flash memory. This is usually done using the Protect command.

Then you will need to set Run Mode - by switching off the Program Mode switch. This switch
usually located on the Application Board that the controller is plugged into.

If you put the controller into Run Mode with your application still in RAM the controller will
refuse to run the application immediately, but will also give you an option at the terminal to copy
the application to Flash.

But for now, while you are developing your code, keep your application in RAM and keep the
program mode switch in the Prog Mode position. This makes developing your code much faster
and more efficient.

Developing your code

You can now start adding new code to your file. Whenever you want to test what you have
written, just download it (F7), and run it (F10).

Large projects

When your code gets too big for a single file (when it becomes hard to navigate around) then
you can use VenomIDE's Project Manager to manage your project as a set of code files.

This has the added advantage that during code development you can selectively download only
the code files that have changed (F5 in VenomIDE), speeding up the edit-run-debug cycle.

54 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

See VenomIDE Help for how to create a new project.

Tips and Tricks

Here are a few useful shortcuts that we find useful when programming in Venom using
VenomIDE.

Repeat or Edit commands

Sometimes you want to exercise or test a particular bit of code, and you don't want to have to
type it in every time at the command line.

Venom remembers the last 20 commands that you sent it (until you clear its memory). You can
recall these commands and edit them using the cursor arrow keys, Home, End, Backspace and
Delete.

Hit Enter to send a command that has been recalled or edited.

Hit Ctrl-C to abort the command line.

Send any text to the terminal

If you select (i.e. highlight) any text in the VenomIDE editor you can send it to the terminal by
hitting F4. Or, you can send a whole line to the terminal by moving the cursor to the line and
then hitting F4.

Send a commented line to the terminal

It is often useful to list 'test scripts' in your program file - that is command lines that test sections
of your code.

You can comment these lines out so that they aren't executed when the code downloads, but
VenomIDE allows you to execute them easily: if you put the cursor on the commented line, and
hit F4, then the line (minus the ; comment character) is sent to the terminal.

To do_it(n)
...
End
;do_it(10) ;Test 'do_it': put cursor on this line and hit F4.

Note that currently the ; must be the first character on the line for this to work.

Find the definition of a symbol

If you need to see a definition of a symbol in Venom, right click on the symbol and choose from
the many options for finding information about that symbol.

55Your Development Environment

© 2018 Micro-Robotics Ltd

If you place the cursor in a symbol and hit F12 (or Ctrl+?) then the editor will navigate to the
symbol's definition.

Find out what your program is doing

If you type Ctrl-T at the terminal at any time then Venom will send text to the terminal indicating
exactly which part of your code is currently executing.

If there is more than one task running, then the code positions of all the tasks are listed (tasks will
be discussed later).

Note that, by default, Ctrl-T is switched on only in Program Mode.

56 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Multitasking

Until now, all Venom commands have been executed in sequence: one command has to end
before the next can start. However, Venom is capable of executing several sequences at once.
This is known as multitasking. It allows a single controller to handle several independent
processes at the same time.

Multitasking can be hard to understand fully, so we will present a simple model for you to follow
first. This model may well be enough to cover your needs, but if you need to use more
complicated constructions, then these are presented later.

When to use Multitasking

Multitasking becomes necessary when the application requires two or more processes to be
performed independently of each other. That is, when it is important not to hold up (or block)
one process simply because the application program is still involved with another process.

Consider the common example of a controller that is controlling a machine that also has a user
interface.

Without multitasking

Lets say the machine is an oven controller with a temperature sensor that needs polling every
100 milliseconds. The sensor is used to control the oven temperature by turning off the heating
element if the temperature is higher than a set target. You could use code like this:

Every 100
[
 If temp_in . Value > target_temp
 oven . Off
 Else
 oven . On
]

The machine also has a user interface to allow the operator to set the target temperature.
Generally, it is hard for the user interface code to also control the oven 10 times per second: you
have to scan for keys at the keypad in a loop, and make sense of them, all while making sure
that the program always called the oven control code at the correct times. It is possible, but the
finished code is usually quite inflexible.

Here's one example of how it might be written:

57Multitasking

© 2018 Micro-Robotics Ltd

Every 25 ;Scan rate for keypad.
[
 kpd . Update
 Select Case key_input . Key ; read a key
 Case 0
 [
 target_temp := target_temp+1
 Print To lcd, target_temp
]
 Case 1
 [
 target_temp := target_temp-1
 Print To lcd, target_temp
]

 If (Index0 And 3) = 0 ;Every 4th time round the loop…
 [
 ;control the oven while we are getting keys.
 If temp_in . Value > target_temp
 oven . Off
 Else
 oven . On]
]

You would have to make sure that none of the user interface code would ever wait for more
than 100mS.

You would have to make sure that every user interface routine you wrote included the oven
control code, for example if you extend the user interface to a set of menus. For very simple
applications this approach is workable, but it 'blows up' when the control system and user
interface get more complex.

With multitasking

If we use multitasking to solve this problem, we would create a task to control the oven, and a
separate task to control the user interface.

The oven control task could have this code in it

Every 100
[
 If temp_in . Value > target_temp
 oven . Off
 Else
 oven . On
]

The user interface task could use code like this:

58 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Every 30
[
 kpd . Update
 Select Case key_input . Key ;read a key
 Case 0
 [
 target_temp := target_temp+1
 Print To lcd, target_temp
]
 Case 1
 [
 target_temp := target_temp-1
 Print To lcd, target_temp
]
]

These two sets of code could be run simultaneously.

Now we can have the user interface looping every 30 mS, because it might suit the interface to
run at that speed. We still have the oven control loop running at 100 mS.

It doesn't matter to the oven control task if the user interface task stops completely, nor vice
versa.

The two tasks are now independent, and the code development for each of them may be
considered separately, except where they explicitly interact.

How many Tasks can I use?

The Venom language allows you to use lots of tasks. That is, you may use more than it would
ever be sensible to use!

Two useful rules of thumb are:

If the solution to a problem can be solved elegantly without adding another task, then don't
add a task

If you find yourself using more than four tasks to solve a problem, then take a fresh look at
your approach before proceeding

Starting Tasks

When a Venom application starts, there is just one task running – the one that executes the
startup procedure. This is called the main task or the command-line task . Some simple
applications may never need another task.

A new task may be started with the Start command.

This command takes a block of code, and runs that code in a new task. Often the code is just a
single procedure, though any block could be used:

59Multitasking

© 2018 Micro-Robotics Ltd

Start control_task ;start a procedure as a task.

Start [Repeat 20 Print Index,CR] ;start a code block as a task.

Keep Tasks Simple

In general, your application programs will be easier to understand if your task’s code blocks are
each just a single procedure.

Starting all your tasks shortly after startup (in main, say) and keeping them running forever will
make your code much easier to debug and maintain:

To main
 Start control_task_1
 Start control_task_2
 ; This last function is in the command-line task
 ; so we don’t need to start a new task.
 user_interface_task
End

The Prompt

You may notice that the prompt changes when there are other tasks running. This is just to let
you know that there are tasks running in the background. Whenever more than one task is
running, the prompt becomes a double arrow:

-->Start Forever []
==>

When you see a prompt like this you can carry on typing commands, but remember: there are
other tasks running in the background still carrying out their instructions.

Stopping Tasks

Any task will stop naturally if it runs out of code to execute.

For example:

-->Start [Repeat 5 Print Index , CR]
==> 1
 2
 3
 4

 5 [User presses Enter here, to show the prompt]
-->

When the five numbers have been printed, the task runs out of code, and quietly disappears.

Notice that the ==> prompt was displayed before the numbers printed by the new task. This is

60 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

because the prompt was displayed before the new task had a chance to print the first number.

The third prompt, sent in response to the user typing Enter again, shows the task has gone.

In order to stop a task before it finishes its work, the Stop command may be used.

Stop

Stop needs to know which task you wish to stop. The Start command returns a 'task object',
which may be used for this purpose, or you may use the task's ID number (see Listing Tasks
later). The following example illustrates starting a procedure as a task and later stopping it.

-->mon_task := Start monitor_in
==>Stop mon_task
-->

The command Stop All will stop all tasks except the main (command-line) task.

The main task can’t be stopped using a Stop command. Ctrl-C will stop the main task.

Additionally, typing CTRL-C at an empty command line will stop all active tasks:

-->Start Forever[]
==>

[User typed CTRL-C here to stop the task:]
==>STOP ALL
-->

So, typing CTRL-C once will stop the main task, and typing it again will stop all the other tasks.

Try not to let tasks end

In general we recommend that you try to write your programs so that you start all the tasks you
need near the beginning of your program, and that they all run forever.

If a task does need to end then it will probably have to clean up after itself, which can be difficult
to think about.

Listing Tasks

The List Task command produces a list of all the tasks Venom is running, including details of
where each task is.

For example:

61Multitasking

© 2018 Micro-Robotics Ltd

==>List Task

Task ID: 0
waiting at the prompt.

Task ID: 1
in proc1 (working.vnm line 6)
in proc2 (working.vnm line 10)
in a task started from main (working.vnm line 14).

Ctrl-T

Perhaps even more usefully, if you type Ctrl-T at any time, then List Task is called, so you can
find out what your application is doing at any time even if you don't have a command line.

The list of tasks will also tell you if any of your tasks are 'blocked' - i.e. waiting for another task
to release a resource before it can continue.

Our Simple Multitasking Model

Even apparently simple multitasking systems can sometimes harbour complex problems if they
are not written well.

If you follow the rules in our simple model, then you will be able to use multitasking in Venom
without having to consider any of the more complicated things that can go wrong.

Only one task owns a resource

This means that major resources like the LCD, the Keypad, and the set of Digital I/O and so on,
should each only be accessed by a single task. You should design your code around this idea.

For example, you might have one task that only controls the Digital I/O, and another task which
only accesses the LCD and Keypad to make a user interface.

Tasks communicate via signals

If your tasks need to communicate with each other, you can use global variables to signal from
one task to others. In previous examples, the variable target_temp was used as a signal from the
user interface task to the control task. That is, the user interface task writes to target_temp, and
the control task reads it. In this simple model, you should have only one task writing to a
particular signal, though many may read it.

62 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Don't call a procedure from more than one task

It is quite possible, and sometimes useful, for two or more tasks to be running the same
procedure at the same time. However it is likely to break one of the preceding rules, so to be
safe don't do it.

Don't use locking

Locking is a feature of some objects. It is used in more complicated multitasking systems where
it is very useful. However, if you have obeyed the first rule, that only one task uses a particular
resource, then you won't need to use locking.

Consider task latency

For every extra task you have running in Venom, your code may miss up to 2mS of run time.
Thus if any part of your code needs to catch events shorter than 10mS, then you can't have more
than 5 tasks active.

Start tasks at the beginning

All your tasks should be started soon after the initialisation phase of your application, preferably
in a procedure called main.

Don't stop any tasks

If you stop a task (or allow it to end), the chances are you’ll need to start another one again,
which breaks the rule above.

That completes the rules for a pain-free multitasking application in Venom. It is possible to write
much more powerful and sophisticated multi-tasking systems. This is covered later.

SUMMARY

If you use our Simple Multitasking Model you should be able to create a robust multitasking
application very easily.

63Developing an Application

© 2018 Micro-Robotics Ltd

Developing an Application

You have now been introduced to all the major parts of the Venom language except for the
details of the 'object types'. We recommend that you now look through the second part of this
manual (Part 2: Object Tutorial) and get familiar with objects by using them.

Then you will be ready to start writing your own application for VM2. There is a checklist for
how to plan and complete your application in Appendix A: Development Checklist.

Advanced topics

This section of the manual continues with more advanced topics. You may not need to learn
about these – glance over them and read any sections that are appropriate to your application.

64 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Debugging

Debugging is the process every application programmer has to go through to remove bugs, or
mistakes, in the program code.

The next pages present some of the tools available to help you find bugs.

Print

The simplest form of debugging available in Venom is Print. If there is a problem with the
program you are working on, insert a line to print out the values of important variables, or use
Print to show the order of execution of different parts of the program, or to find out exactly
where an error is occurring.

Print output normally goes to your terminal. In some applications the main serial port is being
used by the application. In this case the output may be redirected to another device.

Print output may be redirected using the To keyword or by using the Output message of the
OperatingSystem object (called system). See Text Handlers and Redirection.

Useful places to redirect debug output are:

To another of the controller's serial ports

To an LCD display

To a TextBuffer or file object, where it may be stored for later examination

Print is often all that is needed to find most bugs.

Commenting out

Another effective tool for finding bugs is 'commenting out' lines of code.

This means putting the comment character at the start of the line of code, so that it's not actually
run. This way you can selectively remove parts of your program to isolate the bits that are going
wrong.

To proc
 do_something
; try_something_difficult
 do_other_thing
End

If you want to quickly comment out a whole block of code you can select the block by dragging
the mouse over it, then hit Ctrl+; - i.e. hold the control key down while hitting the ; semi-colon
key.

To un-comment a whole block use Shift+Ctrl+;

65Debugging

© 2018 Micro-Robotics Ltd

Finding errors in your source

Error listings in Venom2 refer to the file and line number the error was estimated to have occurred

in. It is very easy to double click on error reports in the terminal and have the editor display the
correct file and line of your program.

The lines that are active for error navigation are those that contain a file name and a line number
in parentheses; e.g:

... (main.vnm line 100)....

Sometimes a range of lines is indicated - this is where Venom has not been able to pinpoint the
source of a runtime error to a single line. When you double click on a range of lines then you are
taken to the first line in the range.

Here's an example of a runtime error, seen when running an application:

Runtime error 5: Un-initialised variable: 'new_var'

in read_port (mycode.vnm lines 21-24)
in process_input (mycode.vnm line 30)
in main (mycode.vnm line 39)
in the command line.

This report shows where the original error occurred (but only gives a range of lines), and also
lists the 'call history' that led to the error: which procedures were being called when the error
happened. Double clicking on any of the lines with a file name and line number will take you to
the correct point in your code file.

Narrowing down the error line

The runtime error reporter tracks down errors by looking for embedded line number information
in the compiled code. A bit of code may contain lots of embedded line numbers, leading to an
error being tracked down to a single line. However, the code may contain few embedded line
numbers, leading to an error being tracked to within a range of lines.

You can improve the error tracking by temporarily embedding more line numbers in your using
NOP statements. NOP stands for No Operation - i.e. it does nothing, but it does embed a line
number in the code.

You can sprinkle NOP statements around your code to pin point the error.

No file name

If the error report doesn't contain a file name, but instead just lists a line number, then the line
number refers to lines within the procedure. In this case error navigation won't work. This lack

66 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

of file name usually occurs if the procedure wasn't downloaded with the IDE's download
commands, but was instead sent as text into the terminal - maybe using Edit Paste or
Download selection.

Listing tasks

You can find out what each task in the system is doing at any time typing Ctrl-T (so long as Ctrl-C

and T are enabled - which is the default setting).

Even if you only have one task in your system, Ctrl-T is a useful way of finding out what it is
doing.

Read more

Help

The Help keyword will tell you what kind of thing the variable refers to. Many bugs are due to
a variable referring to the something different to what you expected.

-->Help led
It is the OnBoardLED. Try PRINTing it for more info.
-->

Print may also be used to find out about the contents of variables. Printing an object will often
tell you useful information about it.

SUMMARY

Use Print statements to printout where your program is or the value of critical variables

Comment out sections of code to find those that are causing a problem

Double clicking on runtime error reports takes you to the source line in the editor

Ctrl-T will list all the active tasks to the terminal allowing to you see what your program is
doing at any time

67Errors and Exceptions

© 2018 Micro-Robotics Ltd

Errors and Exceptions

This chapter discusses

Runtime errors

Handling runtime errors in controlled way

Using exceptions to handle difficult coding problems more easily

Runtime Errors

Venom issues a runtime error whenever it fails to execute a command for any reason. When a
runtime error occurs, the task in which the error occurred is stopped. An error report is sent to
the designated error output device: the terminal, via the main serial port, by default.

Error reports

Runtime error reports will generally look like the example below.

Runtime error 5: Un-initialised variable: 'new_var'

in read_port (mycode.vnm lines 21-24)
in process_input (mycode.vnm line 30)
in main (mycode.vnm line 39)
in the command line.

The error text describes the error, and may give supporting information, in this case the name of
the offending variable.

Then the report goes on to list the procedure the error occurred in, together with an estimated line
number. It also gives the list of callers, i.e. the procedures that called the procedure that failed.
 Because Venom code is compiled, it is not possible for the error listing to locate the error exactly
in all cases.

When a runtime error occurs, the task in which the error occurs will normally halt. If the error was
in the main task then control returns to the command line. Unaffected tasks will carry on running.

Runtime errors causing program execution to halt like this is fine during the development of a
program, but is unacceptable during operation.

Instead you can deal with runtime errors in two other ways:

1. Reset the controller when an error occurs

2. Trap the error

68 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Reset on Error

Reset on error

Resetting the controller when any runtime error occurs is the default behaviour when the
Program Mode switch input is 'off'. This behaviour is set up in the default startup procedure,
by setting the 'system variable' ErrorAction.

Catching Errors

The Try/Catch construction allows you to catch or handle errors instead of just allowing the
operating system to handle them - which involves stopping your program!

The Try/Catch construction typically has two parts: the main code and the error handler.

The main code follows Try.

The error handler follows Catch. It always starts by listing the name of a variable to hold the
error number should an error occur.

 Try
 [
 main_code
]
 Catch error_number
 [
 error_handler
]

How it works

When the program reaches the Try command, the main code is executed. If no errors occur then
the program jumps past the error handler and carries on as normal.

If there was an error, then the program immediately jumps to the error handler, where the error
number may be tested to choose how to handle the error.

In the example below, the procedure will return the result of a division operation, or if there was
a divide by zero error, it will print a warning (and return the value zero).

To try_divide(a,b)

69Errors and Exceptions

© 2018 Micro-Robotics Ltd

 Local r := 0, error_code
 Try
 [
 r := a Div b ; try the division.
]
 Catch error_code
 [
 Print "caught error", error_code, CR
]
 Return r
End

Passing on errors

If you want to distinguish between those errors you want to handle and those you want to pass
on (either to the operating system, or to 'deeper' Try/Catch constructions), then you can use Exit
to re-issue the error:

#Define Div_ZERO_ERR 7
To try_divide(a,b)
 Local r := 0, error_code
 Try
 [
 r := a Div b ; try the division.
]
 Catch error_code
 [
 Select Case error_code
 Case Div_ZERO_ERR
 Print "caught div by 0",CR
 Case Else
 Exit error_code ; pass on other errors to deeper error
handlers.
]
 Return r
End

Exceptions

Exceptions

Try is useful for handling errors - but it can also handle other exceptions. For example you may
wish to jump right out of a set of nested loops. Exit will generate an exception (similar to a

70 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

runtime error, but deliberate) that can be handled with Try.

Try
[
 Forever
 [
 Every 10
 [
 If condition
 Exit 0 ; Jump out of the loops
]
]
]

Note that you don't have to use the Catch part of the construct - in this case if the code Exits, it
just carries on after the Try block. However if you don't use Catch then you can't tell if the loop
was exited because of Exit or a runtime error.

You can also use Try, Catch and Exit to jump out of deeply nested procedure calls. Exit always
takes an integer value that may be used to distinguish an Exit from a runtime error, or between
different Exit points:

To driver_code
 ...
 If unusual_event_a
 Exit 100
 ...
 If unusual_event_b
 Exit 101
 ...
End

later...

71Errors and Exceptions

© 2018 Micro-Robotics Ltd

Try
[
 driver_code
]
Catch error_number
[
 If error_number = 100
 deal_with_unusual_event_a
 If error_number = 101
 deal_with_unusual_event_b
 Else
 Exit error_number ; pass on real errors.
]

Task end exceptions

When a task is commanded to Stop this is handled by a special runtime error. You can handle
this error as an exception using Try and Catch, allowing your task to 'clean up' before it ends.

Here is some code that demonstrates how local objects and global locks can be cleaned up
when a task ends, either naturally or if it is sent the Stop command.

72 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

#Define TASK_DEATH_ERROR 32 ; Error code.

To a_tidy_task
 Local error_number
 AutoDestruct
 Local buff := New Buffer(String)

 Try
 [
 Every 1000
 do_something_with(buff)
]
 Catch error_number
 [
 If error_number <> TASK_DEATH_ERROR
 Exit error_number ; Handle other errors 'further up'.
]

 ; Tidy up when this task ends:
 make_outputs_safe
 ; Ensure these are unlocked if there is
 ; any chance they were left locked by this task.
 global_object_a.Lock(0)
 global_object_b.Lock(0)
 global_object_c.Lock(0)
End

Runtime error codes

Note that you can find out the value of all the runtime error codes by typing Debug(13) at the
command line.

Tidying up after exceptions

Because Try, Catch and Exit break normal program flow their use can result in parts of your
application being left in unexpected states. For example objects might be left locked that should
not be, or temporary objects might not be removed.

Using the restorative locking scheme can be used take care of any problems with locking.

AutoDestruct will handle problems with temporary objects.

Implicit locking

You may need to take care of locking even if you don't explicitly lock any objects in your code.
Objects are sometimes locked by the system implicitly. This is usually in association with printing:

73Errors and Exceptions

© 2018 Micro-Robotics Ltd

any object that is printed to, or is printed, is locked for the duration of the printing.

SUMMARY

Try and Catch may be used to handle errors and exceptions.

Exit may be used to generate an exception or jump out of nested loops.

Exit may be used to simulate a runtime error.

Take care with locking or temporary objects inside Try. See Tidying up after exceptions
above.

74 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Macros

Macros are pieces of program text that have been given a name. They are a very powerful tool,
and can make your code easier to write and understand.

Things that may be useful to name using macros are

Constant values

Expressions

Any text used in several different places in your program

Because a macro is defined in one place, you only have to make a change in one place to be
sure that the change is reflected throughout your code.

Even though there are some special rules that need to be understood when using macros, they
improve a program's readability so much that this is worth the extra effort.

Creating Macros

Macros are defined with the #Define construct.

For example:

#Define PI 3.14159
#Define clock_present net . Find(160)
#Define Age .Element(5) ;invent new message name

To use a macro, just use it's name in your code:

circumference := (2 * PI) * radius

This is the same as writing

circumference := (2 * 3.14159) * radius

Macros may also take parameters, for example:

#Define RGB(red,green,blue) (red << 11 + green << 6 + blue) ;
Macro parameters

my_colour := RGB(12,2,19)

RGB(12,2,19) will evaluate to the value 24723 at compile time because of the constant
folding built into the compiler.

75Macros

© 2018 Micro-Robotics Ltd

Nesting Macros

Macros may be nested to any level. This means that a macro definition can include other
macros. It doesn't matter which macro is defined first.

#Define hours (minutes * 60) ;a nested macro
#Define minutes (seconds * 60)
#Define seconds 1000

Note the use of () to make sure that, when the macro is used, the expression the macro
may be embedded in is calculated with the correct precedence rules. Make sure there is a
space between the end of the macro name and the (. Putting a (immediately after the
macro name indicates a macro that take parameters.

Listing Macros

Macros may be listed out:

List Define ; lists all macros
List <name> ; lists out the given macro
List Word ; lists out all symbols by type, including macros.

Constant Folding

If you define a macro where there is a lot of calculation of expressions then the compiler may be
able to optimise the calculations so they are done at compile time rather than run time. This is
called constant folding. For example the macro hours will be compiled down to the value
3,600,000 rather than the expression 60 * 60 * 1000.

Redefining Macros

You can redefine macros using #Define, but if you do a warning will be issued if the text of the
macro has changed in any way.

If you know that a particular macro will be redefined within your project, use #ReDefine
instead. This won't issue a warning.

Removing Macros

If you want to remove the macro and use its name for something else then use #UnDef
<macroname>

You can re-define the macro at any time.

76 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Null Macros

You may define a macro to be nothing:

#Define something

This will simply expand as nothing at all.

Macro Limitations

Current limitations that may be improved later

Macros can only be one line long

SUMMARY

#Define is used to define macros.

Using macros to name constants and expressions makes for better programs.

Macros can take parameters for more sophisticated expressions

Undef is used to remove a macro - the name may be re-used for any other purpose

#Redefine is used if you need to use a macro name for different purposes in the same
project

77Conditional Compilation

© 2018 Micro-Robotics Ltd

Conditional Compilation

Conditional compilation is where the programmer can tell the compiler to include or not include
parts of the program when it is compiled, or to provide different options within the code that are
selected at compile time rather than run time.

This is often useful when there are different versions of the same basic application program that
match different versions of the hardware, or where there are 'debug' options in the code that
need to be turned on or off in a consistent way.

Conditional compilation is done using 'preprocessor' commands, which always start with a #
symbol.

The simplest commands are

#If and #EndIf.

#If must be followed by a condition. The condition is an expression that the compiler can
calculate immediately, and which must evaluate to an integer constant.

If the value of the expression is not zero then the lines of code between #If and #EndIf are
passed to the compiler.

If the value is zero then the code is not passed to the compiler. It is as if they did not exist, or
were commented out.

Example

In the example below, the line of debug code (which prints the values of some variables) is either
included in the program or not based on the value of the macro DEBUG_FLAG.

#define DEBUG_FLAG True

To do_something
 x := a_function_of(y,z)
 #If DEBUG_FLAG
 Print "The value of x is: ", x, CR
 Print "The value of y is: ", y, CR
 #EndIf
 Return x
End

Other commands

There are two other conditional compilation commands: #Else and #ELIF.

#Else is used to include different code when the #If condition is zero:

78 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

#If CONDITION
 do_this
#Else
 do_that
#EndIf

#ELIF (short for 'Else If') is used to provide multiple clauses:

#If VALUE = 0
 this_code
#ELIF VALUE = 2
 that_code
#ELIF VALUE = 3
 the_other_code
#Else
 none_of_the_above
#EndIf

All these conditional compilation commands operate on blocks of lines in your program code. A
line with one of these commands on it should not have any other code on it, though comments
are OK.

Nesting

#If, etc, can be nested:

#If CONDITION_A
 #Define CONST_VAL 10
 #If CONDITION_B
 #Define MAX_VAL 34
 #EndIf
#EndIf

79Optional parameters

© 2018 Micro-Robotics Ltd

Optional parameters

Optional parameters

In Venom you can declare that some parameters to a procedure are optional - that is, you don't
have to supply the optional parameters when you call the procedure.

Optional parameters are always at the end of the parameter list. When you call a procedure that
has optional parameters you can only omit parameters from the end of the parameter list.

When an optional parameter is not supplied it is given the value integer zero, just like
uninitialised Local variables.

Optional parameters are declared by putting [] around the optional parameters, as in the
following examples.

Here two out of the three parameters are optional:

To proc1(a,[b,c])
 ...
End

Here all the parameters are optional:

To proc2([a,b,c])
 ...
End

To call a procedure with optional parameters just treat it as if it took the number of parameters
you wish to send as in the examples below:

proc1(1)
proc1(10,3)
proc1(10,3,)
proc2
proc2(1,2,3)

Processing optional parameters

Your procedure code will often need to know how many actual parameters have been passed to
it - the Venom keyword ParamCount returns this number.

You can also access all the parameters to a procedure or method by using the Venom function
Parameter(n), which returns the value of the nth parameter, where the first parameter is
Parameter(1).

You can determine the data type of a parameter using the TypeOf operator.

See the Venom Help file for more information on all these Venom keywords.

80 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Further Expressions

This chapter introduces some of the more advanced types of expression. Some of these
subjects are covered in much more detail in the Venom2 Help File.

Initialising Global Variables

Venom will create a global variable the first time it sees its name. However, it doesn't assign the
variable any value: you have to do that.

If you don't give a variable a value, then it has the value 'un-initialised' and it is an error to try to
read it.

The procedure below is used to initialise a variable called var:

To initialise
 var := 1
End

However, var is still not assigned a value, as the procedure has not yet been called. Below,
we've tried to read its value before it was assigned:

-->Print var
Runtime error 5: Un-initialised variable: 'var'
in the command line.

This is one of the most common runtime errors you will see. It is often good to make sure all the
global variables you use are initialised in your init procedure, or elsewhere.

Using Hexadecimal and Binary numbers

In all of the examples so far, the numbers have been in decimal notation i.e. they are made up of
the digits 0 to 9. In computing, other number bases are often used. Of these, Venom supports
hexadecimal and binary. In hexadecimal (base 16), numbers consist of the digits 0 to 9 and the
letters A to F (or a to f). To indicate that the number is hexadecimal, the $ symbol should be
used to 'introduce' the number. The example below prints the value of $3FFF.

-->Print $3FFF, CR
 16383
-->

Note that the number will still print as a decimal. Numbers can be printed in hexadecimal by
using the ~ symbol. For example:

-->Print ~16383, CR
 3FFF
-->

A similar system is used for binary except that the symbol is % and values can be printed in

81Further Expressions

© 2018 Micro-Robotics Ltd

binary using ~~. For example:

-->Print ~~1253, CR, %100001, CR
10011100101
 33
-->

Characters and String Constants

Sometimes your program may have to deal with character information. To help with this you can
express a character constant by using the ASCII character within single quotes:

-->an_integer := 'A'
-->Print an_integer,CR
--> 65
-->

String constants

String constants are used to hold strings of characters. These are usually expressed as text
within double quotes, as in some of the Print commands we have seen already.

A string constant may be assigned to a variable:

-->str := "This is some text"
-->Print str,CR
This is some text
-->

Or passed as a parameter to a procedure:

-->ProcessText("Some text")

You may also find the length of a string constant:

-->Print str.Length , CR
 17
-->

Embedded text

There is another way to create string constants, which is called embedded text. Instead of using
quote characters to delimit the string, the following delimiters are used:

<<<:this is the text>>>

There are several advantages to using embedded text:

1. Embedded text can spread over multiple lines

2. Embedded text text is literal, so no 'escape coding' is needed for special characters

Embedded text is mostly used to embed other languages within Venom code, e.g. HTML for

82 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

web pages.

For example:

Print <<<:<h1>Title</h1>
 This is the body text<p>>>>

Notes

Note that all string constants are constant. You can print them, find their length, send them as
parameters and refer to them with variables, but you can't change their contents. This is more
than enough for many simple applications.

For more flexibility in text handling see String objects and Text Buffers.

Also see the sections on printing strings and Arrays of strings.

String constant concatenation

If two string constants appear one after another on the same or different lines, separated only by
white space or comments then they will be concatenated - i.e. they are joined together as a
single string constant.

This can be useful sometimes, for formatting your code into an easy-to-read form, but it can also
lead to confusion.

For example the following array only has one (long) string in it, repeated five times, because all
five quoted strings have been concatenated into one, and then the four empty elements of the
array are filled with the last value supplied.

Array fruitnames (String, 5)
 "Apple"
 "Pear"
 "Banana"
 "Plum"
 "Apricot"
End

This is equivalent to

Array fruitnames (String, 5)
 "ApplePearBananaPlumApricot"
End

And printing it we see

83Further Expressions

© 2018 Micro-Robotics Ltd

-->Print fruitnames
ApplePearBananaPlumApricot
ApplePearBananaPlumApricot
ApplePearBananaPlumApricot
ApplePearBananaPlumApricot
ApplePearBananaPlumApricot
-->

To get the desired behaviour commas are needed between each string.

Array fruitnames (String, 5)
 "Apple",
 "Pear",
 "Banana",
 "Plum",
 "Apricot"
End

Escape sequences

Sometimes you might want to put the quote character, ", into a quoted string. This is obviously
not possible in a straightforward way. Instead you have to use an escape sequence (or you
might use embedded text).

An escape sequence is introduced with a \. To put a quote in a string use \":

-->Print “There's a\” quote in here somewhere!”
There's a" quote in here somewhere!-->

The complete list of escape codes is:

84 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Sequence Yields the character ASCII

\\ Backslash: \ 92 $5C

\" Double quotation mark: " 34 $22

\$hh Any ASCII character from hexadecimal - hh

\a Causes a terminal to emit an audible alert 7 $07

\b Backspace 8 $08

\f Form feed 12 $0C

\n New line 10 $0A

\r Carriage Return 13 $0D

\t Horizontal tab 9 $09

\v Vertical tab 11 $0B

\^hh Bitmap reference - hexadecimal number - hh

Strings on the command line

There is one more thing about string constants that you should know. Each time you use a string
constant on the command line, then a small amount of memory is lost to the system until the
next time the system restarts.

This doesn't happen when strings are used within procedures. It would only matter if your
application relied on using large numbers of string constants on the command line, in which case
you would need to restart Venom if memory got low. This would be a very unusual application
of the Venom command line.

Bitwise Operators

Bitwise operators work at the level of individual binary bits within an integer.

The most commonly used bitwise operators are And, Or, Eor and Inv

And, Or and Eor each operate on two values.

And

And produces a binary '1' in the result only if there is a binary 1 in both the first value and the
second value it is given, see the calculation set out here:

85Further Expressions

© 2018 Micro-Robotics Ltd

%100100101010101
And
%100110100101010

%100100100000000

And is often used to reset bits within a binary number.

Or

Or produces a binary '1' in the result if there is a binary 1 in either the first or the second (or
both) of the values it is given:

%100100101010101
Or
%100110100101010

%100110101111111

Or is often used to set bits within a binary number.

Eor

Eor (for Exclusive Or) produces a binary '1' in the result if there is a binary 1 in either the first
or the second value (but not both):

%100100101010101
Eor
%100110100101010

%000010001111111

Eor is often used to optionally flip bits within a binary number.

Inv

Inv takes just one value and inverts each binary bit to give the result:

Inv
%100110100101010

%011001011010101

An example of And and Or being used is

result := input_value And %10010101 Or %10 ; Reset some bits
and set others.

Shift operators

There are two more bitwise operators that shift bits within an integer to the left and right by a

86 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

specified amount: << and >>.

For example:

result := input_value << 5

or

result := input_value >> shift_amount

Memory Expressions

It is possible to access the memory of the your Venom-based controller directly using the ?
operator. This is not normally required. It is discussed in detail in the Venom2 Help File.

Pointer Expressions

Note to C programmers: Pointers in Venom are only used to 'pass by reference - never as
pointers into memory. Everything you might use a pointer for in C you should use an
object for in Venom. There may sometimes be an exception to this, in which case you can
use the ? operator. This is discussed in the Venom2 Help File.

Passing parameters by reference

When a command such as that shown below is executed, the value of variable alpha is set to the
value of variable beta.

-->alpha := beta
-->

Occasionally it is necessary to get a reference (or 'pointer') to the variable instead of its actual
value. For example, the following procedure was intended to take a variable and alter its value
such that it lies between the two limits given. The procedure shown below is an example of its
use.

87Further Expressions

© 2018 Micro-Robotics Ltd

To range(var,lo,hi)
 If var < lo
 var := lo
 If var > hi
 var := hi
End

-->num := 53
-->range(num,25,35)
-->Print num, CR
 53
-->

It can be seen that it has not worked – the value should have been changed to 35. The reason
for its failure is that when the procedure is called, the value of num is given to the procedure.
The procedure successfully ranges the value, but this has no bearing on the value of num. What
is required is to give a pointer to num to the procedure. A pointer to a variable is obtained by
placing a @ symbol before it, as in @num – this is now a pointer to num. To 'follow' a pointer to
its variable, the ! symbol must be used. The correct version of the procedure is shown below.

To range(var_ptr,lo,hi)
 If ! var_ptr < lo
 ! var_ptr:= lo
 If ! var_ptr > hi
 ! var_ptr:= hi
End

-->num := 53
-->range(@num,25,35)
-->Print num, CR
 35
-->

Pointers to objects

It's not usually useful to take a pointer to an object.

This is because the variable name that refers to an object - like dt in the code below - is already
a pointer, and it doesn't add anything useful to refer to that variable with a pointer.

Make dt DateTime ; 'dt' is like a pointer to the object
created.

88 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Procedure Pointers

It is possible to obtain a pointer to a procedure. This can be useful when choosing between
several courses of action.

Simple command languages may be created using this feature. The following example uses an
Array of procedure pointers to act on commands coming over a serial network.

To turn_on
 led . On
End

To turn_off
 led . Off
End

To report
 Print led
End

Array procedure_table (@dummy,3)
 @ turn_on
 @ turn_off
 @ report
End

To run_protocol
 Forever
 [
 action := serial . Get A
 !procedure_table . Element(action)
]
End

The pointer expression

!procedure_table.Element(action)

Reads one of the elements out of the array depending on the value of action, and then uses
this as a pointer. As the pointer is a procedure pointer, it calls one of the three procedures.

Parameters to procedure pointers

Procedure pointers may also be sent parameters. You have to help Venom decode this rather
complicated construction by using parentheses.

89Further Expressions

© 2018 Micro-Robotics Ltd

Used as a statement

Additionally, if you are calling a procedure pointer as a Venom statement it is good practice to
use square brackets, as shown below to stop the preceding expression (proc_a in this case)
taking the opening parenthesis as a parameter list:

To procedure
 proc_a
 [(!procedure_table.(n)) (par1 , par2)]
End

If you didn't use the square brackets then the opening parenthesis would be seen as a parameter
list to proc_a.

Used as an expression

However, if you wish to use the value returned by the procedure call, then the square brackets
cannot be used. For example:

a := (!procedure_table.(n)) (par1 , par2)

Note that in both cases we have omitted name of the Element message. This is a shortcut
allowed by Venom.

90 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Further Objects

This chapter introduces some of the more sophisticated things you can do with objects.

Printing Objects

Just as numbers and strings may be printed, Print is also capable of printing objects. It has been
shown already that the Print command can be used as shown below:

-->Print thermometer.Value, CR
 45
-->

However, the object itself may also be printed:

-->Print thermometer, CR
[Analogue: 45]
-->

It has a similar effect. The printing of the object is left up to the object itself – it is just instructed
to print itself (it is sent a Print message internally). As a result, an object can print whatever
information it deems to be useful. It uses the [] as a reminder to the programmer that it is not a
simple number.

A particularly useful object to print is the I2C bus, usually called net. This lists all the devices it
has connected to it.

-->Print net
Devices on the I2C network No.1:

Number Channels Device Description
------ -------- ------ -----------

160 PCF8582/83... RTC/EEPROM...
-->

In this case, an EEPROM was found.

When objects are printed, they may take account of any format specifiers sent (using the colon
operator :). Each object will interpret print formatting in its own way. See the definition for
each object in the Venom2 Help File.

Using Nil

There is a special type of object called Nil.

In short, it is an object that accepts any message (and ignores it).

Nil returns the value 0 (i.e. False) to any message that is sent to it, and ignores any text
printed to it.

It can be useful to use Nil in the place of a real object or number to indicate 'nothing' or 'no
value'. Nil may be tested for equality or inequality with anything else:

91Further Objects

© 2018 Micro-Robotics Ltd

If x = Nil
 Print "x is Nil", CR
If x <> Nil
 Print "x is not Nil", CR

Object Expressions

When you create an object with Make, you are both creating an actual object in the Venom
system, which may also affect the memory or hardware in some way, but you are also creating a
variable that refers to that object.

-->Make str String(10000)
-->

Here, str is the variable that refers to the String object we created (which has no name of its
own).

You can do all sorts of things to the variable, but that doesn't affect the object.

For example you can 'copy' the value of one variable into another:

-->str2 := str

This has not created another String, but just another variable that refers to the same String.

You can also 'lose' the object:

-->str := nil

Here, the original String still exists, taking up useful memory, but the variable str doesn't refer
to it anymore and can't be used to access it. In this example we still happen to have a variable
that refers to it (str2).

The above examples are not suggestions for how you should write your Venom code, but an
attempt to illustrate how objects and variables are related.

Here are some examples of how objects may be used in a more sophisticated way.

Firstly, an object may be passed to a procedure as a parameter. For example, the procedure
below will output ten pulses on any object that understands the message Pulse.

To pulse_ten(obj)
 Repeat 10
 obj.Pulse
End

Secondly, a procedure may create an object, modify it, and return it:

92 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

To give_me_a_string_filled_with(contents)
 Local str := New String(size)
 Print To str, contents
 Return str
End

In this case you should be careful to manage the objects created so as not to lose track of them,
and thus 'leak' memory from your system.

Sending Messages to Expressions

Messages are only sent to objects, however, an object may be represented by an expression
that is more complicated than a simple variable name. Some of these are:

A procedure that returns an object as its result

A message that returns an object

Following a pointer

We will look at the most useful of these. The rest may be treated as exercises.

Sending messages to objects held in a Buffer

It is possible to create a special type of Buffer object that can hold any other kind of object - or
any venom variable type. This is refered to as a Buffer of Any:

Make ba Buffer(Any)

You might choose to put some digital objects in it:

Repeat 16
 ba.Put New Digital(128+Index0)

Then you can send them any message acceptable to a Digital object - here sent to the object in
the buffer's element number 5:

ba.(5).On

Creating Temporary Objects

Sometimes it will be necessary or useful to create an object on a temporary basis.

Temporary objects are often held in local variables. You can't use Make with a local variable,
but you can use the keyword New:

Local workspace := New String(100)

93Further Objects

© 2018 Micro-Robotics Ltd

It is necessary to remove these temporary objects, or else each time the procedure in which they
are defined is called, a new set of temporary objects is created, but the old ones are not
removed. This leads to a 'memory leak'. Eventually Venom will run out of memory, until it next
restarts.

Usually its best to remove temporary objects when the procedure they were defined in
terminates. However it can be very difficult to maintain code where every possible exit route
from a procedure has to be covered.

AutoDestruct

AutoDestruct may be used to remove temporary objects no matter now a procedure
terminates.

Any local variable that is declared after AutoDestruct is checked on exit from a procedure; if it
contains an object, then the object is removed by sending a Die message.

AutoDestruct covers all normal procedure terminations - including End, Return, Exit and Try/
Catch. It doesn't cover the case when a task terminates on an uncaught runtime error or Ctrl+C.

Local variables that are defined before AutoDestruct are not checked.

To proc
 Local a := 10 ; Don't check this one
 AutoDestruct ; On exit, remove these:
 Local workspace := New String(100)
 Local temp := New Array(Int, 10)
 ...
End

Accessing dead objects

If you don’t keep track of the objects you are creating and destroying then it’s possible to try to
access a dead object. Venom has an internal mechanism that detects this most of the time, but
it’s better to get your software design right to begin with.

Here’s an example of how you might accidentally try to access a dead object:

-->Make b Buffer(String)
-->c := b
-->b.Die
-->c.Put(0)
Runtime error 25: Message to dead object
at $260408 in the command line.
-->

Here we kept a reference to the object, c. Even though we deleted the original reference, the
other one could be used to try to access the object. Venom intervened with a runtime error to
make sure the system didn't crash in an undefined manner.

94 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

95Further Printing

© 2018 Micro-Robotics Ltd

Further Printing

This chapter introduces further facilities available from the Print command, and introduces the
PrintF message.

Text Handlers and Redirection

Normally Print sends its output to the main serial port. It is possible to print text to a different
object using Print To.

Changing the object to which text is printed is called redirection. The object to which the output
is printed might be one of the types listed below, which are able to accept print.

Object Type Result

AlphaLCD The text is displayed on the alpha-numeric LCD

SerialPort The text is sent directly to the serial port

Buffer(String) The text is printed to the Buffer

File(String) The text is printed to the file

GraphicsLCD.Window The text is printed in the window

RealTimeClock The text is interpreted to set the time and date

DateTime The text is interpreted to set the time and date

For example, the following prints the value of counter on the LCD.

-->Print To lcd , counter , CR
-->

Note that the comma after the object being printed to is compulsory.

The object to which a plain Print (without 'To') normally sends print jobs may also be changed –
see the Operating System message Output, in the Venom2 Help File.

96 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Further Printing Keywords

As well as the printing keywords already introduced, there are a number of others. No single
object understands all of these.

Keyword Effect

BEEP Emits a beep on the terminal

BS Moves the cursor back one character

CENTRE Changes the text justification mode of the graphics LCD to
centred text

CHR n Prints an ASCII character of the given number

CLS Clears the screen

CR Moves to the beginning of a new line

FONT Changes the font that the text is printed in

GOTOXY(x,y) Moves the cursor to the given location

HOME Moves the cursor back to the top-left of the screen

LEFT Changes the text justification mode of the graphics LCD to
flush left text

RIGHT Changes the text justification mode of the graphics LCD to
flush right text

For more details on the use of a keyword on a particular device, refer to the object type in the
next part of this manual, or refer to the Venom2 Help File.

How PRINT works

All the text handlers described above accept ‘extended’ text consisting of normal and extended
characters. It is the task of the Print command to convert all the expressions in the print list into
acceptable extended text. During this process it divides up the total print output into packets of
text. Each 'packet' is a collection of up to 200 characters that are assembled before being
passed on to the text handler as a print job. Short Print statements will cause single, less-than-
full print jobs to be used, and very long ones will require many print jobs, one after the other, to

97Further Printing

© 2018 Micro-Robotics Ltd

carry the output.

Since it is important that no more than one task writes to an object at any time, the Print
command locks the object being printed to while all the text is sent – only when it has finished
will it unlock it.

When an object is asked to print itself, it may lock itself so that its contents are consistent during
the print process.

PrintF

Venom2 also has a PrintF message that can be sent to any object that can accept print (i.e. can
be PRINTed To). This works in a very similar way to the C function of the same name

In general Print is more useful at the command line - for printing small numbers of items, and
PrintF is more useful for printing within your application - for variable items embedded in a line
of text. Both may be used in either context.

Venom2 has extensions that add to C's printf, e.g. %o means print an object, %b is for binary.

In application code

The lines

serial.PrintF("The temperature is %iC on %2o at %3o\n",
temperature, clock, clock)

and

Print To serial, "The temperature is ", temperature, "C on ",
clock: 2, " at ", clock:3, CR\n"

both produce this output:

The temperature is 0C on 17-Feb-09 at 13:11:40

But the first is easier to write, understand and maintain.

At the command line

However, at the command line it's a lot easier to use

Print clock

than

PrintF("%o", clock)

See the Venom2 Help File for details of how PrintF is used.

98 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Further Multitasking

This chapter discusses the more complicated aspects of multitasking. You only need to read this
if you can't fit your application into our simple model, though you may want to read it out of
interest.

Task Management Scheme

The Venom operating system uses a 'Round-Robin, Pre-emptive' task manager. 'Round-Robin'
means that there is a simple list of tasks, and each is scheduled to run in list order, starting over
again when it reaches the end of the list. There is no task-priority scheme.

'Pre-emptive' means that the Venom operating system takes charge of when task swaps happen
– it's not under your control.

Atomic operations

An atomic operation is one that can't be split into more than one part by a task swap. Venom
has some operations that are defined as atomic.

Writing a variable

Reading a variable

Locking an object

Semaphore object operations

The atomic nature of these operations is important, to allow tasks to share simple resources
easily.

Processing Power and Task Latency

There are penalties for using a large number of tasks. Clearly, if Venom is handling many tasks
at one time, it cannot run them as fast. Also, a significant amount of memory is required for each
extra task running.

Since, at a very low level, the microprocessor in the controller cannot execute more than one of
its instructions at a time, multitasking has to be done by rapidly switching between the tasks,
executing a little bit of each task at a time. This has the appearance of all the tasks running at
once. If all the tasks are using all the processing power the hardware has to offer, then each task
will slow down proportionally to the number of tasks that are running. So if there were three
tasks, each task would be running at one third its normal speed. Fortunately this is unusual as
most real applications have tasks that do some work and then wait for a period of time or for an
external event. A waiting task takes very little resource.

Unfortunately there is a system property that does suffer with every task added: Task Latency.

99Further Multitasking

© 2018 Micro-Robotics Ltd

Venom will swap tasks roughly every 1mS, with maximum task duration of 2mS. Thus if there
are, say, five tasks running, the maximum time that any one task will have to wait is 5 x 2mS =
10mS. This is known as the latency of the system. It is likely that most of the time no task will
have to wait this long, but many applications are dependent on the worst-case delay so they
don't miss important external events.

Task Objects

When you start a new task the Start command returns a Task object. This object is
associated with the task and it allows you to monitor or control the task. For example you can
send the task object the following messages:

Done - returns True if the task has finished (i.e. it is dead)

Die - this does the same as Stop taskobj

Task-local state

The task also has an active variable called State. This can contain any Venom value - usually
an object - in fact it's best if it's a user-defined object.

Setting the task's State allows you to associate a whole set of values with a task - it is as if it
has its own private set of global variables.

Note that a task's State is initialised to the value Nil.

Current task object

There is an object that represents the current task, and it is represented by the keyword Task.
For example, you can set the State for the current task:

Task.State := New MyClass

Setting up a task's state

This is the best way for a new task to set up its State:

To task_code
 AutoDestruct
 Local state := New TaskState
 Task.State := state
 ;...
End

Note AutoDestruct is used to automatically remove the state object when the task dies.

You can detect when a newly started task has initialised it's state by comparing it with Nil:

100 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

To main
 tsk := Start task_code
 Await tsk.State <> Nil
 ;...
End

And this is a skeleton Class you might use for a task's state:

Class TaskState
 Value Int

 To Initialise
 Value := 10
 End
End

You can add any members and methods to the Class that you need for your application.

Sharing Resources

Every application has inputs, outputs and data storage of some kind. Each of these things is
called a resource. For example, a keypad is a resource, and so is a display. Sometimes two or
more resources are always used in conjunction with each other, and may usefully be considered
a single resource. In this case, the keypad and display constitute the user interface resource.

Allocate Resources to Tasks?

Whenever two or more tasks have to share a resource you will need to be careful in your
programming. In fact, it is sometimes so hard to design an application that will share a resource
among tasks in real time that it is often easier to rewrite the application so that each major
resource is only ever accessed by one task. In our earlier example this is illustrated by the user
interface task, which is the only task that ever 'talks to' the display.

Easily-Shared Resources

Some kinds of resources are very easy to share. These are the ones that have a single value that
you want to read, but not write to. Sharing these is just a matter of reading the value. An
example of this is reading a Venom integer or float value from a global variable.

Signalling between Tasks

Because reading a variable won't cause resource-sharing problems, the simplest way for tasks to
pass information to each other is by using global variables to signal each other. You just have to
obey the rule:

101Further Multitasking

© 2018 Micro-Robotics Ltd

Only one task owns a variable at any time.

That is, only one task may write to the variable, though any number may read it at any given
time.

We saw the example of the value target_temp being used this way earlier.

Task-local state

Though is it simple to signal between two tasks using a global variable, it is not easy to do
anything at all complex or sophisticated using global signals. It is better to use the task's State
to do the signalling. Because the state may be a user-defined Class, you can create any
signalling scheme you want to.

Synchronising Tasks

There are circumstances where you can have a global variable signalling two ways.

In these cases, the value of the variable performs the function of determining which task owns it.
For example, the main task may signal another task to go and perform an operation. The other
task can use the same signal to report that it has finished. In the example below, we assume
each procedure is running in a separate task.

To main_task
 signal := True ;signal sub-task to act
 do_something_else
 Await signal IsFalse ;wait for signal back
 carry_on
End

To sub_task
 Forever
 [
 Await signal ;wait for signal before acting
 do_operation ;act
 signal := False ;signal back
]
End

Note that you can use a task's State to signal in similar ways.

102 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Sharing other resources

The kinds of resources that are difficult to share are those that are written to, or otherwise
affected, by more than one task.

The most common problem encountered with these sorts of resources is where a task might
interfere with (or corrupt) another task's use of the resource.

The next most common problem is where an important task is held up while it waits for a slower
task to finish using a shared resource.

Examples of where you will need to consider the implications of sharing a resource are:

Sharing a display device – if you are not careful the display may be messed up

Reading from input devices like a serial port or a keypad – one task may 'steal' keys or
characters that another task was expecting

Using data structures like Array and Buffer – the data set may become inconsistent

Using networks and buses – you may mess things up on the bus, or hold up other traffic

Consider this simple example:

One task has a line of code that increments a global variable. A different task has a line that
decrements the same variable.

count := count + 1 ;in task A ; In Task A

count := count 1 ;in task B ; In Task B

Say count starts off with the value 4. It is possible that Task A could read count and add 1 to it.
 Then, just before it wrote 5 back into count, Task B could come in, read count, and subtract 1
from it, and write back the answer 3. Task A could then get back control and finish its job,
writing 5 in count. '5' is, of course, the wrong answer. The wrong answer only happens when a
read-then-write access to count is broken by a task swap that also needs to write count.

As this kind of problem only shows up intermittently, it is important, early in the software design
process, to identify situations where it might arise and make sure it is dealt with before it shows
up, rather than in the field.

Ask yourself the question: 'Are there any resources or variables in my system that more than one
task has to affect?'

It is worth repeating: it is often easier to re-write an application so that none of its
tasks have to share a resource than to try to make resource sharing work.

103Further Multitasking

© 2018 Micro-Robotics Ltd

Sometimes you just have to share resources among tasks. Resource Locking is the mechanism
that allows this to work. This is discussed in the next section.

Idling

In order to save electrical power, the Venom operating system will use a 'halt' instruction in the
microcontroller's instruction set, to put the CPU into an idle mode whenever possible. It's worth
knowing which kind of Venom instruction will cause the controller to idle, and those which keep
it awake.

The most common examples are Wait, Await and Every. See the appendix F: Optimisation for
more details.

Local Variables and Tasks

It is possible for two tasks to call the same procedure at the same time. If all the variables
altered by the procedure are local variables, there will be no problems, since not only are local
variables local to a procedure, they are also local to the task as well. More accurately, they are
local to each particular time a procedure is called (termed an 'instance' of the procedure).

Whenever a procedure is called, it allocates some stack memory in which to store the values of
the local variables and so, even if there are many instances of a procedure, they will each have
their own set of values for the local variables and will therefore be entirely independent.

You should beware of using global variables and objects in procedures you call this way, as you
may run into the resource-sharing problems detailed above.

Task-local variables

Each task may be given it's own private set of 'global' variables by assigning an object to the
task's State.

See here for more details.

104 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Locking

Problems can occur if a number of tasks use the same object. For example, if a number of tasks
were all writing to an LCD at the same time, the result would be unintelligible - or might even
cause the system to crash.

To solve this type of problem, objects may be 'locked' and 'unlocked'. This means that one task
can claim the object as its own ('locking' the object), and then it can do anything with it – other
tasks that want to use the object must wait until its owner (the task) finishes with it (and 'unlocks'
it). Clearly, an object may only be locked by one task at a time.

You may also use the locking mechanism to deal with the shared global variable problem seen
before. This kind of statement:

count := count + 1

when used in multiple tasks is called a critical area of the code. This is discussed later.

Implicit Locking

Some Venom operations lock one or more objects in order to carry out their work.

The most common example is of this implicit locking is printing. When you print to an object (i.
e. send text to it), the Venom Print Manager will always lock the object for the duration of the
Print command. Thus you can be assured that the output from the Print command will never be
interrupted by another task's print output.

Also, some objects will lock themselves while they are being printed, so that they remain in a
stable state for the duration of the print operation.

Because of implicit locking you should be able to write most Venom applications without having
to explicitly lock anything.

Locking Objects

Some object types have a lock mechanism built into them. Objects with no lock will still accept
all the locking messages, but will ignore them. Locking behaviour is documented as part of each
object's definition.

When you lock an object, if the object is not locked, or it is already owned by the current task,
then the object is claimed for the current task and execution continues normally.

However, if the object has already been locked by another task, then the current task has to
wait. While waiting, the lock is periodically tested until it becomes free. It is then claimed, as
above, and execution continues normally.

When a task is waiting for a lock to become free, it does not use its whole 1mS task slot.
Instead, it swaps out immediately, allowing other tasks to run.

105Locking

© 2018 Micro-Robotics Ltd

Task lists show blocking

When you list out what all your tasks are doing using List Task or Ctrl-T, the listing will tell you if
any of the tasks are blocked, i.e, waiting on a lock held by another task.

Here the user hit Ctrl-T while two tasks where running, one blocked by another:

Task ID: 0
in proc1 (working.vnm line 87)
in the command line.

Task ID: 2
Blocked by Task 0
in b.Lock
in proc2 (working.vnm lines 88-89)
in a task started from proc1 (working.vnm line 86).

Incremental Locking

The classic way to lock an object, and then unlock it is illustrated below:

Obj . Lock
Obj . ;Use the object
Obj . Unlock

Locking and unlocking may be 'nested': if you lock an object twice, you will need to unlock it
twice before it is available to other tasks:

Obj . Lock ;if it was free here…

Obj . Lock
Obj . ; [Use the object]
Obj . Unlock

Obj . Unlock ;…it'll now be free here.

106 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Restorative Locking

The above scheme works fine for most code, but consider what would happen if your code had
to deal with an exception by using Exit while an object was still locked.

Try
[
 obj . Lock
 obj ;use the object
 if exception
 Exit 100
 obj ;use the object
 obj . Unlock
]

The object no longer gets unlocked as many times as it should. This problem can also occur
when using Return or when responding to runtime errors with Try.

You can avoid situations like this with complicated programming, but there is another way of
using locking that avoids the problem altogether.

This scheme uses the fact that Lock returns a result: the number of times it was locked before the
Lock message.

N := obj . Lock

Additionally, Lock may be assigned a value, N, to lock an object to a given level (as if Lock had
been called N times).

obj . Lock := N ;Lock obj N times

This allows the following scheme to be used:

To proc
 Local lock_state
 lock_state := obj . Lock ; Lock it and record pre-existing
lock level.
 obj . ;Use the object
 obj . Lock := lock_state ;restore pre-existing level.
End

This will work even if exceptions cause some lock-restoring commands to be missed.

You can also send the message obj.Lock(0) if you want to make sure the object is not
locked by the current task at a particular point in your code. If the object is actually locked by
another task then this silently does nothing.

107Locking

© 2018 Micro-Robotics Ltd

This scheme is called restorative locking.

Non-Blocking Locking

With the Lock message, you have the risk that a task cannot lock an object immediately, and
thus your task may have to wait (or be blocked) for an indeterminate time.

If this is not acceptable you can use the TestLock message. This tries to lock the object. If it
succeeds then the object is locked and TestLock returns the new level of locking (which is
non-zero). If it fails (because another task already owns the object) then TestLock returns
zero.

If the task does manage to lock the object, then it may be unlocked with Unlock.

To proc
 If obj . TestLock ;Try for the lock…
 [
 obj . ;Use the object
 obj . Unlock ;restore old lock level.
]
End

To fit in with the restored locking scheme described above, TestLock returns the number of
times the object has been locked. The example below shows how to use it.

To proc
 Local lock_state

 ;record lock level:
 lock_state := obj . TestLock

 ;Did we get the lock?
 If lock_state
 [
 obj . ;Use the object
 ;restore old lock level:
 obj . Lock := lock_state - 1
]
End

Notice we had to subtract 1 from the lock level to restore the lock, as TestLock returns the
post-locking level, as zero is used as the return value for failure to secure the lock.

108 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Lock Owner

Occasionally, most likely during development, it may be useful to find out which task has an
object locked. The Owner message on any object will return the task-object that has object
locked, or NIL if the object is not locked.

Deadlock

Deadlock is the 'fatal' tangling of tasks and locks illustrated by the following example:

In Task 1:

ObjA . Lock

ObjB . Lock

In Task 2:

ObjB . Lock

ObjA . Lock

If these bits of code are executed at roughly at the same time, then it's possible that Task 1 will
lock objA and Task 2 will lock objB. From then on both tasks are stalled forever, as neither
can ever lock the other object it needs, nor unlock the object the other task needs.

Deadlock will only show as an intermittent problem, so it's important to eliminate it at the
software design stage.

If you construct your code correctly then deadlock can never happen. The trick is to make sure
that any resources that are locked at the same time by a number of tasks are always locked in
the same sequence in each task:

In Task 1:

ObjA . Lock

ObjB . Lock

In Task 2:

ObjA . Lock

ObjB . Lock

Task listing

You can see if deadlock has occurred by examining a task listing - it will show any blocked
tasks. Deadlock is where two or more tasks are mutually blocking each other. Here task 0 is
blocked by task 1 and task 1 is blocked by task 0 - so neither can proceed.

109Locking

© 2018 Micro-Robotics Ltd

Task ID: 0
Blocked by Task 1
in proc1 (working.vnm line 87)
in the command line.

Task ID: 2
Blocked by Task 0
in b.Lock
in proc2 (working.vnm lines 88-89)
in a task started from proc1 (working.vnm line 86).

Implicit locking may be important

Remember to consider implicit locking when you are thinking about deadlock.

Ending Tasks

In general it makes a multitasking program simpler to think about if the tasks you use never end.

One of the complications of ending a task (one of the reasons it's easier if tasks never end) is that
it is often necessary to clean up the resources that the task has used. This means removing any
temporary objects it has created and unlocking any objects it has locked.

Another complication is that if a task ends then it's likely that you will need to start another one at
some point, to perform the same function. Usually you will have to find some way of being sure
the old task has really ended before you try to start the new one.

However it is sometimes useful to have tasks that end.

There are three different ways to end a task:

1. Let it end naturally

2. Signal to it to end from an external signal

3. Stop it from another task

We will consider all three below.

Let a task end naturally

This means the code just comes to a natural end after completing its job. Tasks that end naturally
are the easiest to clean up after. You just write them as if they are normal bits of code (which
also have to clean up after themselves).

Consider the procedure below, which we start as a task.

110 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

To task_1
 AutoDestruct
 Local str := New String(100)

 Serial.Lock
 do_something_with(str, serial)
 Serial.UnLock
End
...
Start task_1
...

Notice that AutoDestruct is used to clean up the temporary String object, and that though we
lock serial, it is always unlocked before the task ends.

Signal a task to end

If a task would not end naturally - e.g. it usually runs in loop - then you can signal to it to end.

Consider the procedure/task below. Again, we use AutoDestruct to remove the temporary
object, and the Unlock is always performed before the task ends.

To task_1
 AutoDestruct
 Local str := New String(100)

 Serial.Lock

 Every 100
 [
 do_something_with(str, serial)
 If task_stop_signal
 Break
]

 Serial.UnLock
End

Stop a task from another task

When a task is stopped using Stop or Stop All, the task has no control over the point at
which it stops executing. This is very crude - it's a bit like a runtime error. It could leave objects
controlled by the task in any state. In fact, Stop is processed just like a runtime error. Which
means that you can trap the error using Try, and attempt to clean up.

Consider the code below.

111Locking

© 2018 Micro-Robotics Ltd

#Define TASK_STOP_ERROR 32

To task_1
 Local err
 AutoDestruct
 Local str := New String(100)

 Try
 [
 Every 100
 [
 Serial.Lock
 do_something_with(str, serial)
 Serial.Unlock
]
]

 put_IO_in_safe_state
 Serial.Lock(0) ; Unlock fully
End

Here we've used Try/Catch to catch the task stop 'error'. Again, we can use AutoDestruct to
remove any temporary objects at the end of the procedure/task.

But because we can't tell exactly where the task was interrupted, we can't know the 'lock state'
of any objects we may have locked (explicitly or implicitly in Print, say). Luckily we can use the
Restorative Locking scheme to make sure that an object is fully unlocked.

But also you may also have to make sure that any I/O you were controlling, or other systems,
are put into a safe state before the task finally dies.

Critical Areas

Sometimes you will need to lock a whole area of code, not just access to a single object. An
example of this was given above:

count := count + 1 ;in task A

count := count 1 ;in task B

To control access to areas of code you can use an object just for its lock. The object to use is a
Semaphore as this is intended for this job:

112 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Make code_lock Semaphore
...
code_lock . Lock
count := count + 1 ;critical area in task A
code_lock . Unlock
...
code_lock . Lock
count := count 1 ;critical area in task B
code_lock . Unlock

Semaphores

The Semaphore object is more than just a lock - though it's likely it will be used mostly just for
its lock.

However, it also implements the classic semaphore function for resource allocation. It's not
likely you will need to use this, but you can read more about its detailed functioning in the
Venom2 Help File, and about the use of semaphores in computing in many online resources.

Internal Operation

Here are some further details of the internal operation of the Venom Task Manager. You should
not need to understand these for most purposes.

Sharing highly contended resources

The venom task manager attempts to share access to highly contended resources in a fair
manner.

Say there are three tasks all needing frequent access to a highly contended resource such as a
file system or network connection.

All three tasks claim the resource by locking it, then use it for a time, and then release it for use
by other tasks by unlocking it.

It is possible in this scenario for any one of the tasks to 'hog' the resource through accidents of
timing.

Say a task claims the resource, then releases it for a while before quickly claiming it again, as in
the code below:

113Locking

© 2018 Micro-Robotics Ltd

To SendPackets
 Forever
 [
 network.Lock
 Network.Put(packet)
 network.Unlock
]
End
...
Start SendPackets
...

If there is no task swap in the time between the network being unlocked and then locked again,
the other tasks will never get to lock the network - which is quite likely in this code because the
lock is executed again only a few instructions after the unlock.

To get around this problem, if a task has a resource locked, and another task also tries to lock it,
the Venom task manager will set a flag in the lock (called 'task waiting'). When the owner task
releases the lock, if the task waiting flag is set then the task is forced to swap immediately, so
preventing it from locking the resource again before other tasks have had a chance to use it.

Dead tasks holding locks

When a task comes to an end, or is stopped by another task, if you haven't coded the task well
it may be holding one or more global objects in a locked state.

If a task dies leaving an object locked, and then another task tries to lock the object, then after a
short time (less than N tasks x 512mS) the task/lock manager will detect that the live task is
waiting to lock an object that can never be unlocked because its owner doesn't exist anymore.
At this point it will silently unlock the object so other tasks may claim it - your program may
seem to slow down for a fraction of a second. Though this doesn't usually cause a major
problem it is much better to ensure that a task cleans up after itself.

It is also possible to have the system issue a runtime error (Attempt to lock object held by
dead task) so you can detect this situation arising during development. See OperatingSystem.
Debug in the Venom2 Help File.

Removing objects that other tasks are trying to use

When Die is sent to an object with a lock, if any other tasks were waiting to lock the object then
these are allowed to lock it. When they are finished with the object it is then removed from the
system.

If there is any attempt to use the object after this then the runtime error Message to dead object
is issued.

114 Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

The End

This is the end of the Venom2 Language Tutorial - you have been introduced to all the major
parts of the Venom language.

If you haven't already done so, we recommend that you now look through the second part of
this manual (Part 2: Object Tutorial) and get familiar with objects by using them.

Then you will be ready to start writing your own application for VM2. There is a checklist for
how to plan and complete your application in Appendix A: Development Checklist.

115

© 2018 Micro-Robotics Ltd

Part 2:Object Tutorial
Most of the work in a typical Venom application is done by Objects. Objects come in many
different types. Different types of object respond to different messages to perform different
functions. The first part of this tutorial used several types of object in the code examples.

The second part of the tutorial is a more intensive exploration of some of the more commonly
used objects. They are grouped according to the kind of functions they perform: Input/Output,
User interface, Data storage, Operating system…

The principals illustrated using these objects may be extended to cover all the other objects in
Venom2.

For a complete description of every type of object see the Venom2 Help File.

A note to those familiar with C++, Java, etc:

The Venom system predefines many useful types of object. These have been written and
tested by Micro-Robotics Ltd, and are supplied as part of the Venom language. This set of
object types was created to handle the functions most commonly required in small to
medium sized industrial control systems.

It is possible to create new object classes, though it's likely that these will be used more
for data processing than low level device drivers, as they are written in Venom which is
not well suited to this purpose.

We are happy to consider suggestions for new pre-defined objects.

Hardware dependence

Most of the objects in the Venom library interface with real input or output devices of one kind
or another. Where possible this manual will not assume any particular hardware set-up.

Venom Channels

Before we go any further it's worth talking about Channels in Venom. A channel is a single
Input/Output pin in your hardware system that has been given a number. This is purely a
convenient way for Venom to refer to specific bits of hardware; it doesn't necessarily
correspond to any numbers given to pins by the manufacturers of the ICs concerned.

For example, digital I/O channels on the main I2C bus are numbered from 128 to 255. Digital I/
Os coming directly off the microcontroller are numbered from $10 upwards; the datasheet for
the VM2 and the Application board have details of these.

Analogue inputs and outputs have a similar channel numbering. Where possible the channel
numbers are detailed in this manual. If they are hardware-specific see the datasheet for your
controller.

116 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Some analogue devices supported by Venom2 don't use channel numbers - these will be
described individually.

117Digital

© 2018 Micro-Robotics Ltd

Digital

The Digital object type is designed for reading and writing digital input and output. It doesn't
matter whether the I/O is located on the controller itself, on an IC connected to an I2C bus –
Digital will handle them all.

Creating Digital objects

The following three lines create Digital objects.

Make VM2_ip Digital ($2E, 0)
Make VM2_op Digital ($2F, 1)
Make i2c_dig Digital (128)

The first two lines create digital input and digital output objects to control I/O pins on the VM2
controller.

The first parameter is the channel number on the VM2, and the second parameter gives the
attributes of the digital channel - in this case just telling it to be a standard input or output.

The third line creates a digital object on a chip attached to the I2C bus. This doesn't need to be
assigned input or output functionality as it can handle both implicitly.

Setting outputs

Now we can send messages to the objects to control them:

VM2_op.On ;Turn it ON.
VM2_op.Off ; Turn it OFF

Reading inputs

You can read the state of an input or an output with the Asserted message:

-->Print VM2_ip.Asserted,CR
 1
-->

The 1 (True) means the input was asserted - or ON. If it had been OFF then 0 would have
been returned. There is no single standard for whether logic low and high mean on and off – it
depends on the device you are dealing with. However it is most common for ICs to treat low as
on.

Digitals on the direct VM2 channels may be defined with ON being high or low voltage.

Asserted may also be used to set the state of a digital output:

118 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

VM2_op.Asserted := True

Printing

Digital objects print 'ON ' or 'OFF' depending on their state (always 3 characters).

Other messages

There are some other messages that Digitals understand like Toggle, which inverts the state of
an output, and Pulse, which pulses the output.

Digital channel numbering

Channel numbers for digital channels on the controller itself are detailed in the controller's
datasheet. They lie in the range $10 (16) to $7F (128).

Digital I/O channels on an I2C bus (using the PCF8574 IC) have well-defined channel numbers.
 These are listed in the table below.

Each PCF8574 will provide eight digital channels.

There are two types of PCF8574: the normal part and the A-suffix part PCF8574A.

These are identical except for the I2C address each responds to. Venom allocates different
channel ranges to each type, and deals with the addressing transparently.

For example, a PCF8574 chip, connected to the main I2C bus (number 1), with it's address
lines set to 000 (Low Low Low) will have digital channels 128 to 135. If the address were
changed to 001 (Low Low High) then it would have digital channels 136 to 143.

Some other objects (Keypad, AlphaLCD) use these digital channel numbers as an easy
reference to a particular PCF8574 they are using.

119Digital

© 2018 Micro-Robotics Ltd

I2C Device Address
inputs:

A2 A1 A0

Channel
Numbers
I2C Bus 1

Channel
Numbers
I2C Bus 2

PCF8574 000 128 - 135 384 - 391

PCF8574 001 136 - 143 392 - 399

PCF8574 010 144 - 151 400 - 407

PCF8574 011 152 - 159 408 - 415

PCF8574 100 160 - 167 416 - 423

PCF8574 101 168 - 175 424 - 431

PCF8574 110 176 - 183 432 - 439

PCF8574 111 184 - 191 440 - 447

PCF8574A 000 192 - 199 448 - 455

PCF8574A 001 200 - 207 456 - 463

PCF8574A 010 208 - 215 464 - 471

PCF8574A 011 216 - 223 472 - 479

PCF8574A 100 224 - 231 480 - 487

PCF8574A 101 232 - 239 488 - 495

PCF8574A 110 240 - 247 496 - 503

PCF8574A 111 248 - 255 504 - 511

Similar Object Types

For pulsed digital signals see PulseCounter, PulseWidthOut, PulseWidthIn, and Shaft.

120 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Analogue

The Analogue object type is designed for reading and writing analogue input and output. It
doesn't matter whether the I/O port is located on the controller itself, on an IC connected to an
I2C bus – Analogue will handle it.

Input

The following two lines of code make two analogue inputs:

Make an_1 analogue ($30) ;analogue input on the VM2
Make an_2 analogue (256) ;analogue input on I2C bus

To read the input use the Value message:

Print an_1.Value, CR
 173
-->

The number returned is an integer read from the Analogue to Digital Converter device (ADC).
This represents the voltage applied to the actual input. In this case we will assume that the ADC
has 12-bit resolution (i.e. a full scale from 0 – 4095 comprising 4096 steps) and that full scale is
3.3 Volts. Thus the reading in volts would be

-->Print an_1.Value * 3.3 / 4096 , CR
 0.844727
-->

Analogue channel numbering

Channel numbers for analogue I/O on the controller itself are detailed in the controller's
datasheet.

For analogue I/O on the I2C bus, see the table below.

Channel I or O I2C Device Addresses I2Cbus

256 - 287 Input PCF8591 000 - 111 1

288 - 295 Output PCF8591 000 - 111 1

512 - 543 Input PCF8591 000 - 111 2

544 - 551 Output PCF8591 000 - 111 2

121Analogue

© 2018 Micro-Robotics Ltd

Accuracy and Resolution

The resolution of an analogue I/O device is not the same as its accuracy. The resolution limits
the size of the smallest signal you can measure.

The overall accuracy is limited by the resolution, but also by many other parameters of the ADC
or DAC. These include the device's offset error, full-scale error, linearity, temperature drift,
input or output impedance, etc.

The resolution is sometimes expressed as bits - e.g. 12 bits. Or it may be expressed as the size
of the LSBs - the smallest ananlogue signal that may be detected or generated.

If you need a measurement error smaller than 10 LSBs, in general you will need to use the
device's data sheet and add up the sources of error.

Output

Some channels can be analogue outputs:

Make an_out Analogue ($14) ;analogue I and O on the VM2

 Writing to the output is done with Value yet again:

an_out.Value := 4095 Div 2 ; set the output at half the supply
rail

You can also play audio files using an analogue output - see Analogue in the Venom2 Help
File.

Similar Object Types

Analogue values can also be represented in microcontroller systems using pulsed I/O.

See PulseCounter, PulseWidthOut, PulseWidthIn, FrequencyIn, and Shaft.

122 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

AlphaLCD

The AlphaLCD object can drive any alphanumeric LCD display that is controlled by the Hitachi
HD44780 controller IC.

There are usually several ways to attach alphanumeric LCDs to your system: usually directly to
the controller board, and also using a PCF8574 IC on an I2C bus. You can have as many
LCDs as you like, though most applications will only need one.

The make command specifies the number of characters across the display, the number of lines
on the display and the 'location', i.e. how you have connected it to the system.

Make lcd AlphaLCD (20 , 2 , 0)

This command initialises a 20 character by 2 line LCD attached directly to the VM2's parallel
bus.

To print text to the display, use Print To.
Print To lcd, some text

The text will appear on the top line of the display starting at the left hand end.

AlphaLCD understands several Print keywords to modify the printed output:

Keyword Action

CLS Clears the display, setting the cursor to the top
left

HOME Puts the cursor at the top left

GOTOXY (X,Y) Sets the cursor to the X – Y position specified

CR Does a carriage return

GOTOXY takes two parameters in parenthesis. Remember to specify X (characters along the
row) first. Note that the character positions and the lines are numbered from zero.

CR will move the cursor from one line down to the start of the next. If the cursor is on the
bottom line, then the text on all the lines will scroll up, and the cursor will remain on the bottom
line.

123AlphaLCD

© 2018 Micro-Robotics Ltd

Location numbers

The table gives the location numbers to use for the different ways to connect LCDs.

Location Number

VM2 parallel bus 0

PCF8574 on the I2C bus Use one of the channel numbers as the location,
e.g. 128.

Similar Object Types

See GraphicsLCD in the Venom2 Help File, for a more sophisticated user interface.

124 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Keypad

The Keypad object class will drive several types of keypad.

Each type has been given a number. Most of the keypad circuits use one or two PCF8574 ICs
on the I2C bus, which further drive matrix keypads of different sizes and shapes. However, you
can also use a Touchscreen as a keypad - this is covered in the Venom2 Help File and in
example code on our website.

The table below shows the type numbers to use for the different types of keypad.

Matrix Keypad PCF8574 Devices Type Number

4 by 4 1 needed 0

8 by 8 2 needed 1

12 by 4 2 needed 2

You can use these drivers to drive smaller keypads, for example at 4 x 4 driver can drive a 3 x 2
matrix.

The Make command for Keypad takes the type number, and then either one or two channel
numbers, each of which specify a PCF8574 on the I2C bus.

An easy way to find out the channel numbers of any PCF8574s on an I2C Bus is to print the
I2CBus object:

-->print net
Devices on the I2C network No.1:

Number Channels Device Description
------ -------- ------ -----------

 124 240-247 PCF8574A 8 digital I/O lines
 126 248-255 PCF8574A 8 digital I/O lines
 162 PCF8582/83... RTC/EEPROM...
-->

Here we can see that we have two PCF8574As on the I2C bus. We'll use both to make the
keypad…

Make kpd Keypad (1 , 240 , 248)

This will drive an 8 by 8 keypad on two '8574A chips, on the I2C bus, near the top of the
PCF8574A address range.

125Keypad

© 2018 Micro-Robotics Ltd

Getting Key presses

There are several ways to read the keypad. The simplest, but least flexible, uses the message
Get:

-->Print kpd.Get, CR
 5
-->

Here the key decoded as '5' was pressed (key numbers always start from 0).

See the Venom2 Help File for how the keys are numbered on the matrix.

Get will de-bounce the keypad, and make sure that a long key-press is treated as only one
action, by waiting for no keys to be pressed before it can look for a new key-press.

The disadvantage of using Get is that while no key is pressed, the message will wait, blocking the
execution of any other code in the current task.

Another way to read Keypad that does not wait is to use the Asserted and GetLast messages:

Every 50
[
 If kpd.Asserted
 [
 Select Case kpd.GetLast , CR
 Case 0
 [...]
 Case 1
 [...]
 ;etc.

 While kpd.Asserted ; 'De-bounce' the keypad
 Wait 30
]
]

This code will wait for a key-press to be detected. Asserted scans the keypad and returns True
if any key is pressed. GetLast reports the particular key found by Asserted.

The last line of text in the code example is used to make sure that the code only acts on
individual key presses by waiting while the key is still being pressed. This line does cause code
execution to halt if a key is held down, which might be a problem in some applications. There
are ways around this, but it may be better to use a Keypad InputBuffer instead - which we deal
with next.

126 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Keypad InputBuffer

A Keypad InputBuffer is used to collect discrete key presses and buffer them up so that you can
use them at a rate that suits you.

It is neater than using Get or Asserted/GetLast in many circumstances.

To turn on the Keypad's InputBuffer, use the following:

kpd.InputBuffer(10 , 25)

The parameters supplied are the auto-repeat rate and auto-repeat-delay for the keys.

You may omit these parameters if auto-repeat is not required.

Updating

Keypads with InputBuffers have to be 'updated' in order to do their work. This is achieved by
sending the message Update to the Keypad. Update has to be sent both often and regularly for
the InputBuffer to work well: every 30mS seems to be a good rate.

A typical use of a Keypad with an InputBuffer in a user interface might be

Every 30
[
 kpd.Update
 key_press := kpd.Key ; Key pressed?
 If key_press >= 0
 [
 ; select the action for each key.
 Select Case key_press
 Case 0[]
 Case 1[]
 Case Else[]

 ; Update the display if necessary
 update_display
]
]

Another way to update the Keypad is to start a task that calls Update regularly. Update has
been written so that you don't have to worry about resource sharing.

127Keypad

© 2018 Micro-Robotics Ltd

Start Every 30 kpd.Update
...
Forever
[
 key_press := kpd.Get ; Wait for key to be pressed

 ; select the action for each key.
 Select Case key_press
 Case 0[]
 Case 1[]
 Case Else[]

 ; Update the display if necessary
 update_display

]

128 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

NumberReader

NumberReader allows you to set up a keypad to enter numbers into your application calculator-
style. You tell it which keys represent the digits 0-9; minus sign, decimal point and so on, and it
will assemble numeric input for you.

For visual feedback the digits of the number may be displayed on a display device (e.g. an LCD)
while the number is being entered.

Creation

Make nr NumberReader

You don't have to supply any parameters if you want to use it for decimal numbers.

Conversion

The Conversion message tells the NumberReader which keys on your Keypad to use for its
functions.

Since different keypads have different mappings between the identifiers on the faces of the keys
and the logical key numbers, we need a way to specify to the NumberReader which keys are to
be used for which purpose. The Conversion message does this.

(The logical key number is the number returned by Keypad.Key, etc, when you press a key.
On a 4 x 4 matrix the logical key numbers range from 0 - 15.)

Example

Here is an example of the use of Conversion. Note how the Delete function is disabled by being
assigned to key ‘-1’:

#define Delete_KEY -1
#define DECIMAL_KEY 3
#define MINUS_KEY 12
nr.Conversion ;Assign functions to keys on the keypad.
(
 DECIMAL_KEY,
 MINUS_KEY,
 Delete_KEY,
 ;Digits 0-9 on these keys:
 13,0,1,2,4,5,6,8,9,10
)

129NumberReader

© 2018 Micro-Robotics Ltd

The first three parameters are the key numbers for the DECIMAL POINT, MINUS, and Delete
functions.

1. MINUS is for entering negative numbers

2. DECIMAL is for entering a decimal point

3. Delete will delete the number you have entered one character at a time

The rest of the parameters are the logical key numbers for the decimal digit keys.

Redefining the keypad

Conversion may be re-sent at any time to change the functions of the keys.

The keypad

This conversion list above has been created for the this keypad:

; Logical Key numbers:
; 0 1 2 3
; 4 5 6 7
; 8 9 10 11
; 12 13 14 15

; Tile face legends:
; 1 2 3 F
; 4 5 6 E
; 7 8 9 D
; A 0 B C

;Functions:
; 1 2 3 'Float' (dec point).
; 4 5 6 Enter
; 7 8 9 Delete
; - 0 B Cancel

Reading Numbers

In the example below, we send key presses to the NumberReader as they come in. Every time
we get a key we print the NumberReader to the LCD so the operator can see what's going on.

We only stop assembling characters when we get the ENTER key.

130 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

#define ENTER_KEY 7
#define CANCEL_KEY 15

To get_number
 Local k
 Forever
 [
 Print To nr, 100 ; we can set a default value
 nr.reset
 Forever
 [
 Print To lcd, HOME, nr ; visible feedback
 k := kpd.Get ; get a key press
 Select Case k ; decide what to do with it
 Case ENTER_KEY
 Break ; exit loop
 Case CANCEL_KEY
 Print To nr, 0 ; reset number to 0
 Case Else
 nr.Put (k) ; give key press to NumberReader
]
 Print nr.Value , CR ; Print the value we got
]
End

You can use Keypad's InputBuffer.Key to get keys if you don't want your code to wait for keys
inside Get.

Default Value

If you want the NumberReader to hold a default value at the start of number entry (to prompt a
user to accept a default, say) then you can print to the NumberReader.

More

NumberReader has more features than we list here. Please see the Venom2 Help File.

131OnBoardLED

© 2018 Micro-Robotics Ltd

OnBoardLED

The OnBoardLED object is used to control the LED on the controller board. The LED output
is brought out on a connector pin so you can connect your own LED to it if the controller is not
visible.

The behaviour of the LED at reset is determined by the Venom operating system:

When the controller is waiting at the Clear Memory prompt in Program Mode, the LED
is lit continuously.

When the controller is in Run Mode the LED flashes at around once per second.

With this default behaviour, if the LED is unlit, then you can assume there is no power, or the
controller is damaged. If the LED is lit continuously then the controller has been left in Program
ModeMODE.

As soon as Venom starts running your code you can exert control over the LED. In general you
should use the LED to signal the status of your application, in keeping with the default behaviour
listed above. If the default behaviour is sufficient then you need not change it.

Messages

The LED behaves rather like a Digital object and will obey many of the same messages: On, Off,
Asserted, Print and so on.

Flashing

The LED can be made to flash:

led.Flash($80)

The flash pattern is given by the binary bit pattern of the parameter. (There are two exceptions: 0
means turn the LED off, 1 means turn it on constantly).

Everywhere there is a 1 in the binary representation of the pattern, the LED is turned on for
~1/8th of a second (actually 128mS), else it is turned off for the same time. The pattern is
examined from right - and ends when there are no more 1 bits to the left.

Example patterns are given below - but you can create your own.

132 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Pattern in
hexadecimal

Pattern in binary Description

$80 %10000000 Short flash approximately once a
second

$A0 %10100000 Two short flashes approximately once
a second

$A8 %10101000 Three short flashes approximately
once a second

$A9DDCA80 %
1010100111011101110010101
0000000

Signals "SOS" in Morse Code

$3AE77700 %
0011101011100111011101110
0000000

Signals "OK" in Morse Code

133String Objects

© 2018 Micro-Robotics Ltd

String Objects

We dealt with string constants earlier in this tutorial.

String constants are fixed strings of text. They always appear within double quotes, for example:

"This is a string constant"

You can create a variable that refers to a string constant:

str := "This is a string constant"

And you can re-assign the variable -

str := "new string"

But all you have done here is to point str at the first string constant, and later point it at the
second string constant. The contents of the string constants is exactly the same throughout - they
can not change unless you re-write the procedure or array in which they appear.

Variable text

String objects are similar to string constants, but you can change the text they contain. They are
useful for manipulating text, or for creating variable text as the program runs.

String objects are created with Make or New - as with any object.

stro := New String(100)

When you create one you have to supply the maximum size of the text it is to hold - known as
the capacity of the String. It can't hold any more text than this, though it can hold less.

When it is first created, a string object is empty - it contains no text.

You can use Print or Put to put text in it:

-->Print To stro, "Some text"
-->stro.Put("Some more text")
-->Print stro
Some textSome more text-->

Structure

The diagram below shows the structure of a string object.

Each of the boxes represents a single character in the string - such as 'A'.

New text is added using Print or Put at the Write Point.

134 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

The string has a length - which you can read using the Length message. This is the number of
characters in the text.

It also has other properties that are available to read or write using other messages:

Get - gets one character from the ReadPoint and moves the ReadPoint forwards one character.

Queue - the number of characters left to Get

Free - the amount of empty space left in which to append more text in the string.

Element (or .()) - read or write any character in the string.

More printing

You can use colon format specifiers to print just a portion of the text within a String. If you use
one colon, then you can print the left-most or right-most characters. Using two colons allow any
segment of the buffer to be printed. This works in exactly the same way as printing string
constants.

-->Repeat 5 Print stro: Index0 : 5,cr
Initi
nitia
itial
tial
ial t

135String Objects

© 2018 Micro-Robotics Ltd

Finding text

You can find the location of any sub-string in a String using the Find message.

-->position := stro.Find ("XXX")
-->Print position
 5-->

If the search string is not found then Find returns the value –1.

You can specify where the search is to start using an optional second parameter to Find.

position := stro.Find ("XXX" , start_pos)

The search is carried out from the start position towards the end of the String.

Find can also use another String object or a text buffer as the search text.

136 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Buffer

A Buffer is a general data-storage object. Buffers are able to hold a collection of values, as
opposed to the single values held by variables.

Buffers may be used to log data; hold varying amounts of data; form first-in-first-out (FIFO)
queues; form 'circular buffers' and so on.

Diagram

The diagram below may make the operation of the buffer easier to envisage.

Data is written into a buffer at the write-point. When data is written, the buffer grows to the right
of the diagram.

Data is read at the read-point. After each read, the read-point is moved one space to the right.
The data that has been read out is not deleted; the read-point just moves on.

The read-point may be repositioned to any point in the buffer. Also, each 'element' of a buffer
may be read or written-to 'randomly'. Any particular element may be accessed in any order.

Data types

Buffers can hold many different types of data. They can hold 8,16 and 32 bit integers, floating
point numbers and also text. Buffers that hold text are referred to as 'text buffers', and
sometimes operate in a different way to 'numeric buffers'.

Most buffers can only hold one type of data; in general you can't mix data types in a single
buffer.

To create a buffer, you need to indicate the data it is to hold:

137Buffer

© 2018 Micro-Robotics Ltd

Make b8 Buffer(Int 8) ;holds 8-bit integer data
Make b16 Buffer(Int 16) ;holds 16-bit integer data
Make b32 Buffer(Int) ;holds 32-bit integer data
Make bf Buffer(Float) ;holds floating point data
Make bt Buffer(Char) ;holds text

Buffer of Any

However there is one buffer that can hold any type of data. We refer to it as a Buffer of Any.

Make ba Buffer(Any) ;Buffer of Any

It can hold integers, floating point numbers, object references, and pointers to anything.
Additionally, the type in each element can be different in the same Buffer.

The disadvantage is that it uses 8 bytes for each element stored.

Buffer of any may be used to build up complex data structures - e.g. arrays of string objects, or
arrays of procedure pointers or user Class objects.

Filling a buffer

To put data into a buffer, you can use the message Put. This line puts five consecutive integers
into the buffer, i.e. 3, 4, 5, 6 and 7.

Repeat 5 b8.Put (index0 + 3)

Printing a buffer

You can print a buffer to find out what's in it:

-->Print b8
 3
 4
 5
 6
 7
-->

Printing a buffer lists out it's numerical contents in a column. If you use colon formatting then the
format is applied to each element as it is printed.

Reading a buffer

To read data out of the buffer you can use the message Get

-->Repeat 3 Print b8.Get
 3 4 5-->

Each Get reads the next data item in the buffer, starting from the beginning. Get does not
remove items from the buffer, it just reads them in sequence. If you attempt to read past the
write-point of a buffer (i.e. read data that isn't there) a runtime error will occur.

138 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Flushing a buffer

You can remove the data that has been read by using the Flush message:

-->b8.flush
-->Print b8
 6
 7
-->

Here, the elements between the start and the current read-point have been removed,
leaving the unread elements in the buffer.

Other Buffer messages

A Buffer may accept several other messages. These are listed below.

Message Action

Length Returns the total number of data items in the buffer

Queue Returns the number of data items available to be read with Get

ReadPoint Sets or returns the position of the read-point

Reset Resets the read-point back to the start of the buffer

Empty Removes all the data from a buffer

Element

(n) or
(n)

Accesses a single element of the buffer - see below

GetLast This removes an element from the end of the buffer - so you can
implement FILO, or stack-like structures.

Remove() This removes a section of data from any point in the buffer: start,
middle or end.

See the Venom2 Help File for details of all Buffer messages

Element

The Element message may be used to access any element of the buffer.

As Element is quite a long but frequently used message in Venom, an abbreviation may be used:

b8.Element (n) is equivalent to b8.(n), i.e. you can just leave the message name out if
the parentheses are there.

139Buffer

© 2018 Micro-Robotics Ltd

Here we look at the zeroth element of the buffer, then change it's value.

-->Print b8.(0)
 6-->
-->b8.(0):= 10
-->Print b8.(0)
 10-->

If you attempt to access an element that doesn't exist, a runtime error will occur.

How big can a buffer get?

There is no limit to the size of a buffer apart from the memory it takes.

A buffer takes as much RAM as it needs to hold its data. Of course this means it's possible for
a buffer to use the entire RAM available. In this case Venom will issue the runtime error Ram
Full.

Buffers take RAM in small blocks, so that they don't rely on the memory manager having large
blocks of contiguous memory available.

If you need to keep an eye on how much RAM is available in your controller, then you can use
the system message Free.

-->Print Free
 98276-->

This returns the number of bytes left in the 'heap'.

Text Buffers

Text buffers are sufficiently different to numeric buffers to warrant discussing separately. Text
buffers do all the things mentioned above in the same way as numeric buffers, apart from Print.
They also do many things that numeric buffers don't do.

This is how you create a text buffer:

Make tb Buffer(Char)

or

tb := New Buffer(Char)

A text buffer is similar to a numeric buffer with 8-bit integer elements. You can put and get 8-bit
values, but these values are treated as ASCII when performing textual operations.

A text buffer is also similar to a String object.

Text buffers are more efficient than String objects in some situations, and less efficient in others.
The main difference is that text buffers don't have a fixed capacity - instead they use chains of
memory blocks to store the text. They tend to be used for larger amounts of text.

140 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Printing to and from a Text Buffer

When you print a text buffer it prints out the text it holds. However, if you want to see anything,
first you must put some text in it. One way to do this is to print to it:

-->Make tb Buffer(Char)
-->Print To tb , "Initial text"
-->Print tb
This is some text-->

When you print to a text buffer, the new text is appended on to any existing text in the buffer:

-->Print To tb, "more text"
-->Print tb
Initial textMore text-->

Selecting what to print

You can use colon format specifiers to print just a portion of the text within a text buffer. If you
use one colon, then you can print the left-most or right-most characters. Using two colons allow
any segment of the buffer to be printed. This works in exactly the same way as printing string
constants.

-->Repeat 5 Print tb: Index0 : 5,cr
Initi
nitia
itial
tial
ial t

As with strings, you can also implement scrolling text with this feature.

Inserting text

As well as appending text to the end of a text buffer, you can also insert text anywhere within a
text buffer using the message Insert.

-->Print tb
Initial textmore text-->
-->tb.Insert("XXX",5)
--> Print tb
InitiXXXal textmore text-->

You can also insert the contents of a text buffer into another text buffer.

141Buffer

© 2018 Micro-Robotics Ltd

Finding text

You can find the location of any sub-string in a text buffer using the Find message.

-->position := tb.Find (“XXX”)
-->Print position
 5-->

If the search string is not found then Find returns the value –1.

You can specify where the search is to start using an optional second parameter to Find.

position := tb.Find ("XXX" , start_pos)

The search is carried out from the start position towards the end of the buffer.

Find can also use another text buffer as the search string.

142 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Array

Array is a data storage object intended for the following uses:

Storing fixed-size tables of constant data in the ROM (or rather, the Flash memory)

Storing tables of variable data in RAM

Creating Constant Arrays

Because they hold data that is constant during an application, Arrays of constant data
are rather like procedures. They sit in your code file, just like procedures.

The following code creates an Array of 10 8-bit integers.

ARRAY ar8(Int 8,10)
 1,2,3,4,5,6,7,8,9,10
End

The parameter Int 8 specifies that the Array will store 8-bit integers.

You can also create Arrays of 16 and 32 bit integers, floating point numbers, pointers, and string
constants. The following lines indicate how each of these should start.

ARRAY ar16(Int 16, 10)

ARRAY ar32 (Int 32, 10)

ARRAY ar_float(Float, 10)

ARRAY ar_ptr(@dummy, 10)

ARRAY ar_str(String, 10)

Auto fill

When the contents of an Array are not fully defined, the un-specified elements are filled with the
last defined value.

Array of pointers

In the case of Arrays of pointers, the type is indicated by supplying any pointer. I have used a
dummy variable to make it clear that it doesn't matter what the pointer points to: you must use
the @ symbol, but you can have any name you like.

143Array

© 2018 Micro-Robotics Ltd

ARRAY ptrs (@dummy)
 @variable1,
 @var2
End

Array of strings

Arrays of string constants may not seem straightforward at first. Here's an example of their use.

-->ARRAY ar_str(String ,5)
02>”Karl”
03>”Clive”
04>”Della”
05>End
ARRAY Defined (69 bytes @ $26027A)

-->Print ar_str.(0)
Karl-->

Each element of the Array is a string constant. This is very different to a text buffer, which is
rather like an Array of characters.

Printing

You can print the contents of an Array.

-->Print ar8
 1 2 3 4 5 6 7 8 9 10-->

You can read out the data using the Element message…

-->Print ar8.Element(4)
 5-->

or using the shorthand for Element: .()

-->Print ar8.(4)
 5-->

But you can't write to it.

RAM copies of Arrays

If you need to have an Array that you can write to, but that is initialised with constant data, then
you can take a copy of a constant Array:

-->ar_copy := ar8.Copy
-->print ar_copy
 1 2 3 4 5 6 7 8 9 10-->

You can now write to the elements in ar_copy, like this

Ar_copy.(0) := 2

144 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

There are other, more usual ways to create arrays you can write to...

Variable Arrays

You can create Arrays of variable data that aren't copied from constant Array. This might be
useful if you need to create Arrays dynamically for temporary data storage. Or it might be
wasteful to use up ROM space with initialisation data this isn't needed.

The syntax is rather similar to the constant Array:

Make a Array (Int 8 , 10 ,1,2,3,4,5)

Or

a := New Array (Int 8 , 10 ,1,2,3,4,5)

Here the type and size are Int 8 and 10, just like the constant Arrays. The rest of the numbers
are optional initialisers. Again, if there are fewer initialisers than Array elements then the last
initialiser is used to fill the rest of the space.

Unlike the constant Array syntax, you may use variables in the parameter list for Make or New
Array.

Because the initialisers are in the parameter list, it's not a good idea to use many of them: it will
put lots of data on the stack. If you need a large amount of initialising data, use the constant
Array syntax and take a copy.

145RealTimeClock

© 2018 Micro-Robotics Ltd

RealTimeClock

RealTimeClock keeps track of the actual calendar date and time using the real time clock/
calendar module (RTC) built into the VM2.

This module will keep the correct time even when power is removed if the Lithium battery is
fitted and holds charge.

It is possible to calibrate the RTC to around 30 seconds per year drift, assuming constant
temperature. If the temperature is not constant then the time keeping will drift according to the
clock crystal's F/T curve.

It is possible to adjust the RTC calibration according to a measured temperature, though this is
unlikely to be worth the effort.

Creation

Make clock RealTimeClock

This line will make the RealTimeClock, but there should be no need to type it as it is already in
the default startup procedure.

Clock not set

If the clock has not been set (or has lost it's setting) then the Time message will report zero
seconds and the Valid message will return False.

Dividing up the time

You may need to extract elements of the date for use in your application code, for example you
may want to know if it's a Friday. RealTimeClock does not allow you to do this directly,
because of the problem of skewing – for example the seconds value might roll over from 59 to
00 between reading the seconds and the minutes.

You should use a DateTime object to split up a time value into its date and time constituent parts:
year, month, day, hour, minute, second, and the day of the week.

Setting the Clock

You can set the time in the clock by setting its Time. One way to do this is to use a DateTime
object to find the number of seconds since 1990:

Make now DateTime
now.year := 2012
now.month:= 4

Clock.Time := now.Time

146 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Printing to the clock

You can also set the clock by printing to it, which may be easier on the command line:

-->Print to clock , "2012-4-6 9:48:12"

Printing to the clock must obey these rules:

ISO format is used: YYYY-MM-DD HH:mm:SS

You have to provide all the elements of the date, but you can miss out the least
significant time elements, e.g. YYYY-MM-DD, or YYYY-MM-DD HH:MM

You can use any single non-numeric characters to separate the elements of the data and
time, e.g. YYYY/MM*DD HH-mm SS

Printing the Date and Time

If you want to print the current date and time you can simply Print the RealTimeClock object. It
will print out it's current date and time in ISO format:

-->Print clock
2012-04-11 00:02:12-->

You can also specify exactly which parts or the date or time you want to printed, how you want
to see each part formatted, by supplying a format string that contains special codes to format
each part of the date or time.

For example you could use the following (note the use of the colon : to introduce the format
string)

Print clock:"h:mmtt, ddo MMMM yyyy"

This would result in a date presented in this format:

3:15pm, 11th April 2012

The table below has a list of the special date/time format codes. Any other characters will
appear in the output untranslated, such as the comma and spaces in the example above.

If you want to put literal text in the output, but it contains special format characters, then you can
use backslash (\) as an escape code, or < and > as literal text delimiters.

Date/Time formatters

Code Meaning

a or aa am or pm

147RealTimeClock

© 2018 Micro-Robotics Ltd

d Day number 0-31

dd Day number 00-31

ddd Day, abbreviated name

dddd Day, full name

h Hour 1-12

hh Hour 01-12

H Hour 0-23

HH Hour 00-23

m Minute 0-59

mm Minute 00-59

M Month 1-12

MM Month 01-12

MMM Month, abbreviated name

MMMM Month, full name

o Day ordinal: the characters after the day number in 1st, 2nd, 3rd, 4th, etc.

s Seconds 0-59

ss Seconds 00-59

y or yy Year 00-99

yyyy Year as 4-digit number

\ Next character is literal (note that you will need to use two \ characters to
actually enter a \ into a quoted string).

<text> Embed literal text between < and >

The most up-to-date list of special date/time formatting codes appears in the Venom2 Help file.

You can change the locale of the day, month and ordinal strings for different languages - see
OperatingSystem.Debug in the Venom2 Help file.

148 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

'Venom Seconds'

RealTimeClock stores the time as the number of seconds that have elapsed since the base date:
midnight on 1st January 1990. We call this version of time Venom Seconds.

The message Time returns this number, and allows it to be set:

-->clock.Time := 0
-->Print clock.Time
 4-->

There was a 4 second gap between the user setting the time and then reading it back.

Calibration

The clock's initial accuracy depends on the crystal oscillator circuit used by the clock IC. This is
usually accurate to around a couple of seconds a day, depending somewhat on temperature.

It is possible to calibrate the clock using the Adjust message, with a precision of around 1ppm,
which is equivalent to 30 seconds per year, assuming constant temperature. See the Venom2
Help File for more details.

Date Extent

The RealTimeClock can work with dates up until the year 2090, at which point a software
upgrade will become necessary.

149DateTime

© 2018 Micro-Robotics Ltd

DateTime

DateTime objects are primarily date calculators.

DateTime objects perform the complex calculations that translate between the calendar-date/
time-of-day that we are familiar with, and Venom Seconds.

The diagram illustrates how they work.

Each DateTime object holds values of both the calendar date and time, and also the time in
Venom Seconds.

If the Venom Seconds value changes, then the date and time values will be updated to reflect it.
If any one of the date or time values changes, then the Venom seconds value will be updated.
The DayOfWeek value is purely a function of the date, and so cannot be altered directly.

Creation

You can make as many DateTime objects as you want, though each one uses a small amount of
memory.

 Make when DateTime

Spurious Dates

It is possible to enter non-existent dates into a DateTime, for example 30th February.

A DateTime will normally Print a 'real' date: in this case the 2nd March in non-leap years.
However, the Day and the Month elements of the DateTime will still hold the spurious date!
You can elect to print the spurious date if you like. See the Venom2 Help File.

Of course, if a spurious date is set, and then Time is read, Time will always reflect real date, as
there are no spurious values of Time.

150 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Fixing

You can fix up spurious dates by sending the Update message.

when.Update

This is the equivalent of

when.Time := when.Time

Days of the Week

The DayOfWeek message returns the day of the week as a number.

Day DayOfWeek

Sunday 0

Monday 1

Tuesday 2

Wednesday 3

Thursday 4

Friday 5

Saturday 6

The DayOfWeek value cannot be set as it is a function of the date.

151DateTime

© 2018 Micro-Robotics Ltd

Number ranges

The various elements of the date and time have number ranges associated with them, which you
should obey else an error will be issued.

Element Range

Year 1990 – 2089*

Month 1 – 12

Day 1 – 31

Hour 0 – 23

Minute 0 – 59

Second 0 – 59

*The Year value is four figures.

Printing a DateTime

Printing a DateTime prints the date and time held in the object in ISO format, or with special
formatting, just like printing the RealTimeClock.

Also see the Venom2 Help File for more on printing DateTime.

Assigning a date and time

When a DateTime is first created, its time is set to zero seconds. You can set its time and date
in one of four ways:

1. Print to it, like the RealTimeClock

2. Set its Time in Venom seconds

3. Set its date and time elements individually

4. Call the Adjust message to set it like a digital watch.

The code below illustrates these

152 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Print To when , "4-1-02 10:23:00"

when. Time := 378987780

when. Year := 2002
when. Month := 1
when. Day := 4
when. Hour := 10
when. Minute := 23
when. Second := 0

Printing to a DateTime should obey the same rules as printing to the RealTimeClock.

If you want to use a DateTime to extract the date and time in the RealTimeClock so that you can
break it down into it's elements, you can put the clock's time into a DateTime first…

Make now DateTime
now.Time := clock.Time

Altering the date and time

Often you will want to allow the operator of your equipment to alter a date and time - for
example to set or correct the time in the Real Time Clock.

There are many ways to do this, and one is to use the Adjust message on a DateTime object.

Adjust

Adjust allows you to implement ‘digital watch’ style methods to change the date in a DateTime
object.

Every time Adjust is called it will increment or decrement a single part of the date or time, rolling
over if the maximum or minimum value for that field is exceeded.

The part of the date (Day, Month, Year, Hour, Minute, Second) is specified by an integer
parameter, or by a character constant (which is also an integer, actually).

153DateTime

© 2018 Micro-Robotics Ltd

Part of date Number Letter

Day – ranging 1-31 6 ‘d’

Day – only correct date range 0 ‘D’

Month 1 ‘M’

Year 2 ‘Y’

Hour 3 ‘h’

Minute 4 ‘m’

Second 5 ‘s’

All other values are ignored

For example

Date.Adjust(0,1)
Date.Adjust(’D’,1)

are the same – increment the day value.

To decrement a value, use a value of ‘-1’ instead of 1.

If you use values of the increment larger than 1, then this value will be added or subtracted from
the date element. However if the value rolls over, it will roll over to the exact maximum or
minimum value for that part of the date.

Day value

Notice that there are two choices for nudging the day value - one that uses the range 1-31 and
the other that only uses the number of days in the month currently held by the DateTime object.

See the Vemom2 Help File for more detailed information.

154 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Timer

The Timer object is a millisecond countdown timer. You can give it a time period, set it going
and test it to see if it has timed out.

Here we make a Timer with a default time period of 10 seconds.

Make t Timer (10000)

… and set it going…

t.Go

You can test whether a Timer has finished using Done. Done will return True when the Timer
has finished timing.

...
Await t.Done
...

Other Messages

Period will set and read the Timer's time period in milliseconds.

Time will set and read the period remaining in milliseconds.

Printing

You can print a Timer in various formats to show how much time it has left. You should use
colon formatting to get the format you want.

-->Print t:1 , CR
00:00:10
-->

: Printed Format

:0 DD:HH:MM:SS

:1 HH:MM:SS

:2 MM:SS

:3 SS

155Timer

© 2018 Micro-Robotics Ltd

Key

D is a day digit (range 0-24)

H is an hours digit (range 0-23)

M is a minutes digit (range 0-59)

S is a seconds digit (range 0-59)

Note: there are more formatting options for Timer - see the Venom2 Help file.

156 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Stopwatch

Stopwatch is a millisecond up-counter. You can use it to time how long things have taken.

Stopwatch will start counting milliseconds as soon as it has been made.

-->Make s stopwatch
-->Print s. Time
 7395-->

You can reset to zero at any time with Reset.

Note that after around 24 days the Time returned by a stopwatch will overflow, and is not
easily usable. The overflow will cause Time to go to the most negative integer value and
count towards zero, from where it will carry on as normal.

Printing

Stopwatches print in the same ways as Timers.

157SerialPort

© 2018 Micro-Robotics Ltd

SerialPort

SerialPort objects control serial communication ports. You may already have been using one of
them as the default output device for the Print command.

The five ports can operate at standard baud rates up to 115,200 Baud, and higher for non-
standard Baud rates.

Creating a SerialPort

Here we create a serial communication object on port 1:

Make serial SerialPort(115200,1,1)

The three parameters define the port's baud rate, serial port number and handshaking
method.

The port numbers range from 1 to 5. Port 1 is the main serial port usually used to communicate
with the terminal window in your development system.

The handshaking parameter value is shown in the table:

Value Handshaking

0 NONE

1 Hardware

2 Software

The baud rate and handshaking can also be changed after the port has been created.

Messages

The main messages you need to know about are Put, Get and printing.

Get fetches a character from the serial input buffer. If there is no character in the buffer, Get will
wait

character := serial.Get

Printing to the serial object sends the print output to the serial output buffer. Each character is
taken in turn from this buffer, and transmitted. If there is no room in the buffer, then the print will
wait. Serial is the default print output device.

-->Print "Fred"
Fred-->

Put sends a single character to the serial output buffer.

158 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

-->Serial.Put('A')
A-->

If your application should not wait for an indeterminate time for the input and output buffers, use
the Free, Look and Queue messages.

More messages

SerialPort objects can take many more messages. Please see the Venom2 Help File for full
details.

159OperatingSystem

© 2018 Micro-Robotics Ltd

OperatingSystem

OperatingSystem is used to mop up quite a lot of general system functions that would otherwise
clutter the Venom language.

It only makes sense to have one OperatingSystem object, and this is defined in the default
startup procedure

Make system OperatingSystem

Shortcut

Because of a shortcut in Venom, some system messages can be sent without the system. in
front of them - when seen by themselves they imply the system object. Thus the two lines below
are equivalent, and will reset the controller.

-->system.Reset

-->Reset

The full list of messages that are implicitly sent to the system object is

Run
Reset
Debug
PrintF
Protect

Operating System Messages

Here some of the most useful operating system messages are described. The rest are documented

in the Venom2 Help File.

ErrorAction

If set to the value 1, this message will restart the Venom system if a runtime error occurs.

System.ErrorAction := 1

This is essential for robust applications, but is just annoying during development, as you can’t
break out of a program without resetting the controller!

For this reason the default startup procedure sets ErrorAction to zero (0) if the Program Mode
switch is on, i.e. you are developing code. It is usually best to leave the default startup
procedure as it is.

160 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

RunMode

The RunMode message returns the 'run mode' state.

There are two versions of the message.

This version below returns the soft run mode state - this returns True if the Program Mode
switch is set to Off, or if you used the Run message.

system.RunMode

This version returns the hard run mode state - it returns True only if the Program Mode switch is
set to Off:

system.RunMode(1)

Debug

This covers a ragbag set of functions that may help when debugging the Venom system. There
are very few things here that the average Venom application writer needs to know.

If you just type Debug, it will list out its capabilities. These are liable to change.

Free

This returns the amount of general-purpose heap memory left in the controller.

-->Print system.Free
 99466-->

It will also report on other areas of the controller's memory, as shown in the table:

system.Free(0) Heap memory free

system.Free(1) Largest free block in the heap

For example, to find the largest free block…

-->Print system.Free(1)
107982-->

Protect

Protect message allows you to take the code you have developed in RAM and copy it to the
Protected Application Area (in Flash memory), where it is much safer from accidental erasure.
Usually you won't need to do this until you have finalised your application code.

Protect(1) will copy your application code from RAM into the Protected Application Area.

161OperatingSystem

© 2018 Micro-Robotics Ltd

It's best to use Protect(0) first - to make sure there is no application in flash - before using
Protect(1).

Mostly, Protect is typed at the command line, e.g.

-->Protect(0)
-->Protect(1)

Protect also has other options:

Protect (0) Erases the Protected Application Area

Protect (1) Copies the application from RAM into the Protected
Application Area

Protect (2, ...) May be used to create binary distribution files (.vex and/or .
vos).

This has been superseded by Protect(4) for most purposes.

Protect (3) Looks for binary application and/or operating system files (.vex,
.vos files) in the root directory of the Flash Filing System and
uses it/them to update the VM2's firmware.

Protect (4, ...) Create a Venom Firmware Update (.vfu) file, which combines
your application and and the Venom OS into one distributable
file. This may be used to program your units in production, or
for remote firmware update.

See OperatingSystem.Protect in the Venom2 Help
File for more information.

Run

This will cause the controller to reset as if it were in Run Mode. This is useful when you are
testing your application during development. You can leave the controller in program mode, and
just type Run to exercise your application as if it were powering up in Run Mode.

Shortcuts

Note that the function key F10, and the Run icon will send 'Run' to the terminal - these are short
cuts to achieve the same thing - running your application.

162 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Reset

This immediately resets the controller. The controller will start in either program mode or run
mode depending on the program mode switch. This reset is just the same as a power-on reset
for the controller. However, other parts of the hardware system may not be reset fully if they
rely on power-on to reset them.

Speed

You can control the clock speed on the VM2 using the Speed message. You can set the speed
in increments of 8MHz from 16 to 72MHz. You might want to do it to make your controller use
less power.

system.Speed := 16

When Speed is changed you may have to reset the speeds of other objects that had already
been defined, like the serial ports or I2CBus, as their speeds were defined relative to the original
VM2 clock speed.

The procedure below shows how this can be done:

To change_speed(sp)
 Local temp := serial.Speed ; Record the original serial
speed.
 system.Speed := sp ; Set the master clock speed.
 serial.Speed := temp ; Now reset the serial speed.

 net.Reset ; Reset the I2C Bus to take account of new system
speed.
End

PRINT

When you print the system message, a listing of useful system parameters is given.

-->Print system
Symbol table 48 bytes
7 Global variables
99478 Heap bytes free
-->

The format and content of this will change from time to time.

163Creating new classes

© 2018 Micro-Robotics Ltd

Creating new classes

Some programs are much easier to write and maintain if you can group together items of data
that are logically connected into a single entity.

For example, you might want to hold data about a set of people, say their names, ages and
heights.

One way of doing this is to create a variable for each attribute of each person. E.g.

Person_A_name := "Fred Jones"
Person_A_age := 35
Person_A_height:= 1.76
Person_B_name := "Jim Smith"
Person_B_age := 32
Person_B_height:= 1.78

However this very quickly gets out of hand if you want to add more attributes, or add more
people.

Another way of doing it is to create three separate arrays of data:

Make names Array(String, 100)
Make ages Array(Int 8, 100)
Make heights Array(Float, 100)

This is much better than using variables because you can add new people easily, but it is still
rather cumbersome:

Every time you want to add a piece of data to the description of a person you have to
add an additional array, and the code to manipulate it

Accessing the set of data for any particular person becomes unwieldy as each item is an
array expression.

Every person has to be represented within a system of parallel arrays - you can't easily
represent isolated individuals.

A better way of solving this problem is to encapsulate the data for each person within a single
entity (an object), and then manipulate these objects - grouping them together into lists, or
passing them around individually. Even better, you can also encapsulate the code that
manipulates the data within the object.

Venom allows you to do all of this by defining your own new classes (or types) of object.

To solve the problem described above, we would define a new class of object called Person,
and then create a new object of type Person for each real person we wanted to represent in our
program.

Once you get used to using Classes you may find that you want to use them even in
situations where you don't need more than one instance of the Class, because the

164 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

encapsulation of code and data makes your program much easier to write and maintain.

Defining a Class

Each class has a list of data elements called members. Each of these members has a name and
a data type. Data types might be integer or floating point, or other types.

For example a simple class definition might be

Class Person
 Age Int
 Height Float
End

There are many other member data types possible - including different sizes of integer, String,
Array, Buffer, or 'Any' - we will look at these later.

Creating objects

User-defined objects are created similarly to other objects, so we can create a new object of
type Person like this:

Make p Person

or like this:

p := New Person
q := New Person

Each object of type Person we create is called an instance of the class Person.

Accessing class members

We can access any member of the object by sending the object a message. Here we send the
object p the message Age, to read the value of Age:

a := p.Age

or

Print p.Age

There is a quick way to print all the members of a user-defined object for debugging
purposes:

-->Print p
Person (at $64000c64)
 Age = 0
 Height = 0.

Note that the memory address of the object is printed after its type as this address
uniquely identifies the object.

165Creating new classes

© 2018 Micro-Robotics Ltd

We can also write to the members of p explicitly:

p.Age := 21
p.Height := 1.85

Initial values of members

When a new object is created, each member of the newly created object is set to the default
initial value for its data type, which is zero (0 or 0.0) for all numeric types.

-->p := New Person
-->Print p
Person: (at $64000c64)
 Age = 0
 Height = 0.

Member types

Members of a class can have types such as Integer, Floating point number, String, Array,
Buffer - all of the built-in Venom object types - or Any (Any means the member can hold a
venom value of any datatype - e.g. any kind of object, number, string, etc.).

Note that when a member is an object of some kind, the member only holds a reference to the
object, just as when you create an object with Make the global variable only holds a reference
to the object created.

For example we might add a member called Name to the Person class. Name has the type
String.

Class Person
 Age Int
 Height Float
 Name String
End

And we could create a new Person object and initialise Name with a string constant like this:

p := New Person
p.Name := "James"

Or we could create a new Person and initialise Name with a String object like this:

p := New Person
p.Name := New String(50)

Note that the String object will be empty until some text is put in it, like this:

Print To p.Name, "James"

or

p.Name.Put("James")

We can create members with types like Array, Buffer, Class or Any. For example

166 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Class Person
 Age Int
 Height Float
 Name String
 TelephoneNumbers Array
 ListOfContacts Buffer
 Other Any
End

'New' Strings and Arrays

You can declare String or Array members of a Class as New, which means that a new String or
Array object will be created and assigned to that member automatically when the object is
created, and will be removed automatically when the object is removed. See the following
example:

Class Person
 Age Int
 Height Float
 Name New String(50)
 List New Array(Int, 50)
End

Note: Only Arrays of numbers may be declared in this way - not arrays of strings or
pointers.

Note:

1. You can't overwrite a New member (that is, you can't overwrite the reference to it); a
New String or Array it is permanently associated with the object. However, you can
empty the String or Array and write what data you like into it.

2. New String and Array members are removed automatically when your object dies.

Complete list of types

The complete list of member types you can specify are listed in the table:

Type specifier Type of data stored in the member Default initial value

Int Integer (32-bits, signed) 0

Int 32 Integer (32-bits, signed) 0

Int 16 Integer (16-bits, unsigned) 0

Int 8 Integer (8-bits, unsigned) 0

167Creating new classes

© 2018 Micro-Robotics Ltd

Float Floating point number (IEEE Single precision) 0.0

Any built-in Venom
object type*

Reference to an object Un-initialised

Class Reference to an object of a type defined by
Class

Un-initialised

Any Any Venom type (number, object, pointer,
etc)

Nil

New String
(capacity)

String Empty String

New Array
(type, length)

(type must be
numeric)

Array Array filled with
integer or floating
point zeros.

*Note that Digital and Analogue may be specified but will be converted to Any
because of the way they are represented internally.

Removing objects from memory

If your program no longer needs an object you can remove it from the system (freeing up any
memory it took) by sending it the message Die.

You may remember that you can use AutoDestruct to automatically send Die to objects that are
held in Local variables when a procedure exits. You can also use AutoDestruct to
automatically remove sub-objects held by an object when it dies. This can be very useful when
you have a tree-like structure of objects that you need to remove. You can send Die to the
'trunk' of the tree, and all the 'branches' marked with AutoDestruct will also be removed.
This feature is often used in conjunction with Buffer of Any, which will pass on the Die message
to all the objects it contains.

Class MyClass
 ID Int
 MyOwner Class
 MyList Buffer AutoDestruct
 ...
End

When to use AutoDestruct

There is a simple rule that governs when to use AutoDestruct on a Class member:

If the member object is created by the Class, then use AutoDestruct

If the member object is passed into the Class from outside, then don't use AutoDestruct

168 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Note that New Strings and Arrays are automatically given the AutoDestruct attribute
so you don't have to apply it explicitly.

For even more finely controlled behaviour, you can override the Class-default Die message with
your own Die method - this is covered later.

Methods

So far the Person class we have created only has data - it doesn't have any procedures or
methods that act on that data.

It is easy to add methods - they look just like normal procedures, but inside the Class definition.

Class Rectangle
 Width Int
 Height Int

 To Area
 Return Width * Height
 End

End

-->Make r Rectangle
-->r.Width := 10
-->r.Height := 20
-->Print r.Area, CR
 200
-->

Initialising objects

When you first create a user-defined object with New or Make the object is allocated some
space in memory and each member of the object is reset to the default value for it's datatype.

Just like with other Venom objects, you can pass parameters to New or Make. But to process
these parameters you have to give your class a special method called Initialise.

This Initialise method will be called by New or Make, and they will pass on their
parameters so it can use them to initialise the new object.

For example we might do this:

169Creating new classes

© 2018 Micro-Robotics Ltd

Class Rectangle
 Width Int
 Height Int

 To Area
 Return Width * Height
 End

 To Initialise(Width, Height)
 If Width > 400
 Width := 400
 If Height > 200
 Height := 200
 This.Width := Width
 This.Height := Height
 End

End

--> Make r new Rectangle(100, 100)

Our Initialise method uses the parameters we pass to New to initialise the Rectangle's Width and
Height. We also take the opportunity to check the values and limit them if they are too big.

Notice that we introduce a new Keyword, This. This is used here to tell the compiler that
we are referring to the class member, not the local variable of the same name.

(This can also be used to refer to the current instance of the class - i.e. the object that the
message was sent to).

Optional parameters

You can define an Initialise method to take optional parameters, and/or use variable types of
parameters and check them using the TypeOf operator, to provide different ways to create a
new object.

See the Venom2 Help file for more information about the Initialise method.

Indentation

Notice that the method code is indented (using space characters). This makes it visually clear
that the method is inside the Class definition.

Member and method names

You can use any legal venom name for members and methods. Member and method names
won't interfere with global, local or parameter names: a global variable, a local variable/

170 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

parameter, and a member/method could all have the same name but would still coexist happily.

When several things use the same name, you can to tell the compiler which of the three name
spaces to use with the keywords This or Global:

Global.height := 5
This.height := 10

Accessing global variables

By default, you can't access global variables from inside a method of a Class. However you
can explicitly specify a global variable by using the Global operator:

Print To Global.serial, "Hello", CR

Alternatively you can declare a list of globals that you want to use within the Class, at the start of
each Class:

Class MyClass
 Global serial, clock, net
 ...
End

Optional parameters

Parameters to methods (or any Venom procedure) may be declared as optional by using [] to
enclose the optional parameters.

See here for more information on optional parameters.

Active variables

A method can be an active variable. To turn a method into an active variable you have to use :
= followed by a parameter name, after the method name and optional parameter list. For
example, this can be used to implement the Element message for a two-dimensional array class
Array_2D. Partial code for the Class's Element message, which is an active variable, is shown
below; the keyword Assignment is used to detect when an active variable is being written to:

171Creating new classes

© 2018 Micro-Robotics Ltd

Class Array_2D
 ...
 To Element(x, y) := val
 If Assignment
 [
 ... := val
]
 Else
 [
 ...
 Return ...
]
 End
End

Using the array:

a2d := New Array_2D(Int, 20, 30)
a2d.(1, 2) := 3
y := a2d.(1, 2)

Inheritance

Often it is useful to re-use software that you have already developed. A property of Classes
called Inheritance allows you to do that more easily.

Inheritance allows you to create a new, derived, class by inheriting the behaviour of an existing,
base, class, and adding to or modifying that behaviour.

Consider the following class for implementing a button in a graphical user interface.

Looking at the code, you can see that this class is allowed to access the global variable called
LCD; it has a rectangular extent defined by the members Xpos, Ypos, Width and Height; and
it has a method to Draw itself, and a method to Initialise itself.

172 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Class BasicButton
 Global LCD

 Xpos Int
 Ypos Int
 Width Int
 Height Int
 Label String

 To Draw
 LCD.textBox(Xpos, Ypos, Width, Height, 1)
 Print to LCD, Label
 End

 To Initialise(Label, x, y, w, h)
 Xpos := x
 Ypos := y
 Width := w
 Height := h
 This.Label := label
 End
End

We might want to create a new kind of button that can do all the things that the original button
can do, but slightly differently. So we can define a new class that inherits the original class (note
the colon operator that indicates inheritance). When a new class is declared, that inherits an
existing class, all the members and methods of the base class are available in the derived class,
so if we do nothing else, the new class's behaviour is exactly the same:

Class NewButton : BasicButton
End

To change its behaviour we can add a method; in this case we add a method with the same
name as one in the base class:

Class NewButton : BasicButton
 Global lcd
 To Draw
 Lcd.textBox(Xpos, Ypos, Width, Height, $100)
 Print to Lcd, Label
 End
End

So the only behaviour we change here is how the button draws itself. Re-defining the Draw
method overrides the original class's Draw method.

Overriding simply means declaring a method in the derived class which has the same name as a
method in the base class, and which becomes the new default method of that name.

173Creating new classes

© 2018 Micro-Robotics Ltd

In this case, the new Draw method uses a different (constant) border style when drawing the
button.

We can also add new members to a derived class:

Class NewButton2 : BasicButton
 Global lcd
 Border Int
 To Draw
 Lcd.textBox(Xpos, Ypos, Width, Height, Border)
 Print to Lcd, Label
 End
End

Here we've added a new member, Border, and redefined Draw so that this value is used to
define a variable border style for the new class.

Typically, modifying the behaviour consists of any of the following:

1. Overriding existing methods

2. Adding new members

3. Adding new methods

We have covered points 1 & 2 above.

Adding new methods

To add a new method to a derived class you just have to declare it as normal. Make sure its
name doesn't clash with any exisitng method or member name. For example, here we add the
new method MoveTo:

Class NewButton2 : BasicButton
 Global lcd
 Border Int
 To Draw
 Lcd.textBox(Xpos, Ypos, Width, Height, Border)
 Print to Lcd, Label
 End
 To MoveTo(x,y)
 Xpos := x
 Ypos := y
 End
End

Where to 'put' behaviour

A lot of thought will often go into deciding which behaviour (methods and members) should be
contained in which Class in a set of derived classes.

174 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Overriding the Initialise method

Often the Initialise method is overridden in a derived class, especially if the derived class has new
members which will need initialising.

One way to define a new Initialise is to copy the old one and add new initialisation code:

 To Initialise(Label, x, y, w, h, b)
 Xpos := x
 Ypos := y
 Width := w
 Height := h
 This.Label := label
 Border := b
 End

Another way is to call the Initialise method in the base class, and then initialise members declared
in the new class:

 To Initialise(Label, x, y, w, h, b)
 Base.Initialise(Label, x,y,w,h)
 Border := b
 End

Note the use of Base to specify which version of Initialise we are calling (not the one we are in,
but the one in BasicButton). If we didn't use this then we would be indicating that Initialise should
call itself recursively.

Overriding members

Members may be overridden in the same way as methods, though this is much less common.
When there is an overridden member, the class has two (or more) values associated with that
member name. You can use Base, to access the base value(s).

Listing classes

The command List Class will list out all the classes you have defined, in an inheritance tree,
allowing you to see how your class inheritances are organised.

Inheriting Venom types

It is not possible for a user-defined class to inherit a Venom type, such as String, Buffer or
Array. However it is possible to emulate this using message redirection.

175Creating new classes

© 2018 Micro-Robotics Ltd

Accessibility

It is often useful to 'hide' a lot of the data and code used in a class so that they are not visible
from outside the class. This allows a class to present a very tightly controlled 'interface' to the
rest of the system, which makes the overall system much easier to debug and maintain.

This hiding of data and code is achieved by using the keywords Private and Protected in
member and method definitions.

For example, in the class BasicButton we looked at before, we might decide to use the
Private keyword make the Label member invisible outside the class:

Class BasicButton
 Global LCD

 Xpos Int
 Ypos Int
 Width Int
 Height Int
 Private Label String

 To Draw
 LCD.textBox(Xpos, Ypos, Width, Height, 1)
 Print to LCD, Label
 End

 To Initialise(Label, x, y, w, h)
 Xpos := x
 Ypos := y
 Width := w
 Height := h
 This.Label := label
 End
End

However, this will mean that classes inheriting BasicButton would not be able to access the
Label member. If we want such derived classes to be able to access Label we can use
Protected instead:

176 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Class BasicButton
 Global LCD

 Xpos Int
 Ypos Int
 Width Int
 Height Int
 Protected Label String

 To Draw
 LCD.textBox(Xpos, Ypos, Width, Height, 1)
 Print to LCD, Label
 End

 To Initialise(Label, x, y, w, h)
 Xpos := x
 Ypos := y
 Width := w
 Height := h
 This.Label := label
 End
End

There is another keyword, Public, that is not often used because it is the default for all
members and methods in Venom2.

Summary

Here is a summary of the properties of Private, Public and Protected:

Private: the member or method is only visible in the class where it was defined.

Protected: the member or method is only visible in the class where it was defined,
and in derived classes.

Public: the member or method is visible anywhere - you can send messages to an
object to access this member or method. This is the default.

Class-default messages

In Venom, all user-defined objects have a common set of 'Class-default' messages, that they
recognise. The Die message is one of these - the Class-default Die message removes the object
from memory, and also passes on Die to any 'sub-objects' that have the AutoDestruct
attribute).

Class-default messages may be overridden. For example you might override the Die message
because you want the object to do some special tidying up before it dies. To illustrate this we

177Creating new classes

© 2018 Micro-Robotics Ltd

might write the Person class like this:

Class Person

 YearOfBirth Int
 Height Float
 Name String

 To Die
 Global.global_list.Remove(This)
 Base.Die
 End

End

Notice that the Die method first removes the person from some global list (we won't go into the
details of this) and then calls the base Die message to actually remove itself from memory. In this
case there is no explicit base class, so the Class-default Die message is called.

Calling Class-default messages explicitly

Sometimes you may wish to call a class-default message explicitly, rather than as an implicit base
class. For example, to find the class name of a user-defined object you can do this:

Print myObject.[Class]Name

From within a user-defined class you can also use these variants:

Print This.[Class]Name
Print Class.Name

Full list of Class-default messages

The full list of Class-default messages that are understood by all user-defined Classes is given in
the table below.

All of these messages may be called explicitly, and some may also be called automatically by the
system, as indicated in the table.

'Class-default'
message

Function Called internally...

Address Return the memory address of the
object's data block. This is
intended only for debugging
purposes.

Die Remove the object; also send Die By AutoDestruct

178 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

to all sub-objects that have the
AutoDestruct attribute.

Name Return the object's class name.

Print Prints a user-defined object to the
current output stream by
attempting to print the value of
each member. Sending this
message explicitly is only
meaningful inside a method called
Print.

If parameters are supplied then
these are used for formatting in the
same ways as the colon formatting
specifiers in a print list.

By Print <object>

PrintF Sending a PrintF message is one
way to send text to an object.
For this to work you must define
an AceptPrintJob method in
your class. See here for more
information.

Length Returns the number of bytes
needed to hold a binary record
representation of the object.

Special methods

There are some special methods that may be defined within a Class. The three we deal with here
are used to print objects, and print to objects.

Printing objects

If you want to be able to print your object, as in Print p, then you have to define a method
called Print. For example, this method might be defined as part of the Person class:

To Print
 Print Name, " is ", Height, "m tall"
End

179Creating new classes

© 2018 Micro-Robotics Ltd

The Person's Print method will be called if you make a Person object and then Print it:

-->Make p Person(1.78,"Ruth")
-->Print p, CR
Ruth is 1.78m tall
-->

If you define your Print method to take optional parameters, then the parameters will take the
values of any 'colon' print formatting values used in Print. For example:

 To Print([frmt])
 Select Case frmt
 Case 0
 Print Name
 Case Else
 Print Name, " is ", Height:1:1, "m tall"
 End

-->Make p Person(1970,1.78,"Ruth")
-->Print p, CR
Ruth
-->Print p:1, CR
Ruth is 1.7m tall

Printing to objects, or sending PrintF

If you want to print to your object, or send a PrintF message to it, you must define a method
called AcceptPrintJob.

You should not define a method called PrintF, as this will not work. For more information on
sending print to your classes, look up Print To Class in the Venom2 Help File.

Classes as Records

One important use for user-defined classes is to define data templates for records in Files,
EEPROMs or other storage media.

A record is a group of data items in a file (or other storage medium) where each data item within
the record has a distinct meaning, and may have a different data type and a different size.

For example a file of records might contain the details of many different people, for example their
age, name and height. Using a Person object to write, and later read back, the data one whole
record at a time makes the process a lot easier than writing, and later reading, each piece of data
individually.

As another example, an object stored as a single record in a file or EEPROM might be used as a
convenient way to manage an application's non-volatile settings. Multiple records might be used
to manage different sets of settings.

180 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Put and Get

If you Put an object to a File or SafeData object, then the object will be written to the file in a
defined format, so that when you Get an object of the same type from the file, an exact copy of
the original object is re-created.

This example uses a file, but similar code will work for a SafeData object:

Define a record template:

Class Person
 Age Int
 Name New String(100)
 Height Float
End

Write a record to a file:

p := New Person(50,"Albert",1.7)
file.Put(p)

Read the data into a different object of the same class:

q := New Person
file.Reset ;'Rewind' the file.
file.Get(q)

Print q
Person:
 Age = 50
 Name = "Albert"
 Height = 1.7

Note: you may have to remove the objects p and q after you have used them; this is not
shown here.

Permissible record member types

In general a class used for records should only contain members that are of type Int, Float,
Array of Int or Float and String. If you include other member types they won't be stored in the
record.

You may find it is easier to read records with classes that use New Strings and Arrays.

Data formats

Normally the data is written in a binary format. This is the best format to use when writing to
small EEPROM devices.

However it is often useful to use a 'human-readable' format in files. Classes support a 'CSV'
format (Comma-Separated-Values) and an INI file format. See below for more details of these.

181Creating new classes

© 2018 Micro-Robotics Ltd

Record length

Any object that is to be used as a record may be sent the Class-default message Length,
which returns the number of bytes required to store the record in binary format. Length is a fixed
value for all objects of a given Class so long as there are no String or non-New Array members
in the Class. However if there are such variable-length data in the Class then Length is
variable.

Reading strings

When you Get a binary record from storage, and the record contains a String, the String object
in the template is first emptied before being filled from the string held in storage. If the data is too
long for the String object (i.e. the null termination is not seen before the String object is full) then
a runtime error is issued.

Record classes must be consistent

In order to be able to write and then read back data consistently, the template classes used for
writing and reading back should be consistent with each other; ideally they will be the same
class.

Different record classes in one file

You don't have to just use one type of record in a file. You can use any number of different
types so long as you can predict which type to Get before you get it.

CSV Format

Writing in CSV format

To write records to a file in CSV format you have to print the 'template' object to the file like
this:

Print To file, p:",", CR

The formatting expression :"," specifies that the object is to be printed in CSV, using comma
characters as the delimiter. The CR puts each CSV record on it's own line in the file.

You could equally use this if you want to use # as the delimiter:

Print To file, p:"#", CR

Reading CSV format

To read back data in CSV format you should use Get, but with an extra String parameter -
which specifies that CSV format is to be used and supplies the actual delimiter too. For example:

file.Get(q, ",")

(Note: the first character in the string is taken to be the delimiter; the string can be any
length but extra characters are ignored.)

182 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

INI file format

You can also read and write user-defined Class objects in the popular and human-readable 'INI
file' format - for example:

[Person1]
Name="Jim"
Age=42
[Person2]
Name="Fred"
Age=56

When you print an object with the format descriptor "INI" (case sensitive!) then the object will
print all it's members in INI file format:

Class Person
 Name New String(50)
 Age Int 8
End

p := New Person("Fred", 56)
Print to myfile, p:"INI"

prints to the object myfile:

Name="Fred"
Age=56

You have to add the section headers yourself, by printing them, e.g.:

Print to myfile, "[Person1],cr

To read an object back from a file you have to use Get, for example like this:

section := New String(50)
p := New Person("[no name]", 0)

myfile.Get(section) ; read the section header
n := myfile.Get(p,"INI") ; read the object data

Each member of the Person object p will be filled from the values found in the file.

Member names are not case sensitive.

Member values will be read until the end of the file, or a line beginning with [, is seen (the start
of the next section header). The file is 'rewound' so that the [is the next character to be read
from the file.

If a member value occurs more than once then it will be over-written with the last value seen.

Arrays are listed in comma-separated-value format, with a \ to indicate continuation on the next
line.

183Creating new classes

© 2018 Micro-Robotics Ltd

Strings are always in double quotes and no escape characters are supported currently.

Lines starting with ; or # are treated as comments and ignored.

Get will return the number of member values it read.

Data errors

If there are errors in the INI file these will normally be ignored by Get.

However, if you pass a third, non-zero, parameter to Get then it will throw a "Script/Data error"
if

A non-existent member name is seen

A member is of a type that can't be represented in an INI file

An array overflows

For example:

n := myfile.Get(p,"INI", True) ; read the object data

Advanced topics

Sending messages to a derived class

By default, the compiler will resolve accesses to members or methods of the current class
immediately (i.e. at compile time). However, you can force the compiler to delay resolving the
access until run time by using the keyword Derived:

Derived.Message

This allows for a possible override of the message declared in a derived class.

For example

184 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Class BaseClass

 To Method
 ...
 End

 To TestMethod
 Method ; Call the method in the *current* class.
 Derived.Method ; Call the method in the *derived* class.
 End

End

Class DerivedClass : BaseClass

 To Method
 ...
 End

End

Calling an overridden base method

There are some situations where you want to call the base version of a method that has been
overridden. You can use the keyword Base for this:

Class myClass : baseclass
 To method
 ...
 Base.method
 ...
 End
End

Indirect message send

You can take a reference to a message (or member or method), that may be used to send a
message indirectly later. Message references are actually 16-bit integers in Venom2

To take a message reference, use @ followed by a dot and the message name. For example:

msgref := @.MyCallBackMethod

To send the message you have to use this syntax:

<object>.!(<message ref>)(parameters)

For example

185Creating new classes

© 2018 Micro-Robotics Ltd

object.!(msgref)(p1)

A larger example of this being used is listed below.

Class WindowClass
 Name String
 myButton Class
 To Action1(p1,p2)
 PrintF("We are in %s.action1, params: %i %i\n", Name, p1,
p2)
 Return "This is the Action 1 return value"
 End
 To Initialise(name)
 This.Name := name
 This.myButton := New ButtonClass("Button1", This, @.Action1
)
 End
End

Class ButtonClass
 Name String
 CB_obj Class ; Call-back object
 CB_msg Int ; Call-back message ref
 To OnClick
 Return
 CB_obj.!(CB_msg)(1,2) ; This is the call-back
 End
 To Initialise(name, CB_obj ,CB_msg)
 This.Name := name

 ;Set up the call-back 'pointer':
 This.CB_msg := CB_msg
 This.CB_obj := CB_obj
 End
End

To main
 w := New WindowClass("Window1")
 Print w.myButton.OnClick, CR
End

On running this program the result is
We are in Window1.action1, params: 1 2
This is the Action 1 return value
-->

Method prototypes/recursive methods

If you need a method in a class to be able to call itself - ie. recursion, you have to 'prototype' the

186 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

method before it is seen or else the compiler will complain. For example, here the compiler will
complain that it can't call Method because it has not been defined:

Class a
 To Method(n)
 If n
 Method(n-1)
 End
End

To get around this you can 'prototype' the method by defining an empty method of the same
name first:

Class a
 To Method End ; Prototype

 To Method(n)
 If n
 Method(n-1)
 End
End

Message redirection

It is possible to arrange for a Class to appear to inherit a Venom pre-defined type, such as
String, Buffer, Array or any other type (these base types can't be inherited directly in the normal
manner as they are too different to user-defined Classes internally).

This can be done by message redirection, where a defined set of messages to a Class are
passed on to a particular member (or members) of the Class. The messages to be redirected
are listed, with dots, after the member declaration, as in the example below.

187Creating new classes

© 2018 Micro-Robotics Ltd

Class XYString
 XPos Int
 YPos Int
 str String
 .Put
 .Get
 .Empty
 .Print
 .AcceptPrintJob
 .Free

 To Initialise(x,y,size)
 XPos := x
 YPos := y
 str := New String(size)
 End
End

-->xys := New XYString(10,20,50)
-->print to xys, "Hello World"
-->print xys, CR
Hello Word
-->

It is possible to have more than one member set up to have messages redirected to it, but the
sets of redirected messages should not overlap.

The type of the target member for redirected messages can be Any, so you can put any Venom
object in it.

Objects that run in their own tasks

It is sometimes useful to have objects where each instance runs in a separate task. This example
shows how this can be done.

188 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

Class WebServer
 id Int ; An identifier for this object

 To Thread
 ; dummy code:
 Print "Webserver: ", id,CR
 Await False ; wait here forever
 End

 To initialise(id)
 This.id := id
 Start Thread ; Run each instance in it's own task.
 End
End

To main
 Repeat 4
 New WebServer(Index0)
End

Inheritance Testing

Sometimes it is useful to check that an object that has been passed as a parameter, or fetched
from a Buffer or Class member, is the correct type for the operation you are about to perform
on it.

One way to do this is to check that the object either is, or is derived from a given base Class.
The Is operator is used for this purpose.

 If x Is MyClass
 [
 x.Message
]

Interface testing

Another test you can perform is whether a user-defined object has a member or a method with a
given name - using the Has operator:

 If x Has MethodName
 [
 x.MethodName
]

Note that Has won't work with pre-defined Venom types, such as Digital, String, etc.

Handling errors during Initialise

Sometimes you may want to handle errors that occur during a Class's Initialise method. Usually

189Creating new classes

© 2018 Micro-Robotics Ltd

you should arrange your code so that Initialise doesn't generate errors - for example by checking
parameters for valid ranges before you make a new object, or by converting out of range
parameter values to valid values within the Initialise method.

However if you really do need to handle errors in Initialise you may encounter a problem in
Venom: the Initialise method is called after the block for the new object has been allocated on
the heap. If the error is trapped using Try and Catch outside of Initialise then a garbage block
will be left on the heap. Here is one way to get around this problem:

 To Initialise
 Autodestruct
 Local ref := This ; Autodestruct This on errors

 ; <code that may cause an error>

 ref := 0 ; Don't Autodestruct This on normal return
 End

190 Part 2:Object Tutorial

© 2018 Micro-Robotics Ltd

The End

This is the end of the Venom2 Object Tutorial - you have been introduced to some of the more
commonly used objects that are built into the Venom language.

You may wish to read about the large number of other objects available, all detailed in the
Venom2 Help File.

You are now ready to start writing your own application for VM2. There is a checklist for how
to plan and complete your application in Appendix A: Development Checklist.

191

© 2018 Micro-Robotics Ltd

Appendices

192 Appendices

© 2018 Micro-Robotics Ltd

A: Development Checklist

The steps involved in developing a typical Venom application are presented here. You may
have completed some of these already.

1. Satisfy yourself that the controller and application board have the hardware interfaces
that you require. See the datasheet for the controller. Often customers will buy the
controller from Micro-Robotics Ltd, and make the application board themselves.
However, Micro-Robotics can design and manufacture custom application boards.

2. Get familiar with the Venom language and basic Object Types by reading this manual
and by trying out your ideas on your development system.

3. Also use the Venom2 Help File. This will be required for all serious applications.

4. Using prototype hardware, write key sections of your application program to make sure
that they are viable.

5. Design and build the real application hardware in conjunction with the controller's
datasheet and example circuits.

6. Write the complete application program using the real hardware.

7. Go through Appendix D to make sure your application is as robust as possible.

8. Test the application hardware and software.

9. Protect your application from erasure by burning it into the Flash. See the system
message Protect.

10. Go into production with the application hardware and the application software.
(If possible, fix the version of Venom2 Operating system/Language that you use with
your application to avoid any compatibility issues)
Note: You can load new versions of the Operating system and/or your finished
application code into an 'empty' VM2 using a USB Connection. This is much quicker
than other methods. See Production Programming in the Venom2 Help File.

193B: How Do I ... ?

© 2018 Micro-Robotics Ltd

B: How Do I ... ?

This ‘FAQ.’ section deals with how to achieve solutions to commonly encountered problems
using the Venom2 language and object types.

Store Non-Volatile Data

The following objects can handle non-volatile data:

FileSystem: stores data and text files, RAM Filing System, the Flash filing System or
external memory cards (SD, SDHC). Files can hold very large amounts of data.

Manipulate Text

Use the text Buffer and String objects to manipulate text.

Print To the buffer or String to append text

Print all of the buffer or String, or any sub-section of it to extract text

Use Put to append or insert text

Use Find to search for occurrences of a sub-string.

Use Element to access any character within the buffer or String

Use the String or Buffer Value message to convert text to a number

See also Array and string constants.

Enter Numbers on a Numeric Keypad

Use the NumberReader object in conjunction with the Keypad object.

Deal with Calendar Dates

Use the DateTime object to

Convert calendar dates to and from a linear seconds value

Deal with leap years

Find which day of the week it is on any date

Print the date and time in a variety of formats

Facilitate 'digital watch' style date/time entry

194 Appendices

© 2018 Micro-Robotics Ltd

Create User Interfaces

Use the AlphaLCD or GraphicsLCD objects for displaying information and a Keypad and/or
Touchscreen object for entering data, or for navigating menus.

Time events

Use Wait, Every and Timer to have your application do things at the right time

Use Stopwatch to time external events

Use RealTimeClock to relate the controllers actions to real times and dates

Use PulseWidthIn, PulseCounter, PulseWidthOut to measure and generate pulses (See
the Venom2 Help File)

Talk to serial devices

Use SerialPort for RS232 and RS485 communications

Use I2CBus for I2C Bus devices

Use the SPI object for devices on the SPI or Microwire buses

Use OneWire for Dallas 1-Wire bus and iButtons

Generate Pulses

Use the PulseWidthOut object.

Measure Pulses

Use the PulseCounter object to count pulses

Use the Shaft object to count quadrature shaft encoder edges

Use PulseWidthIn to measure the pulse width

Measure Temperature

Use a thermocouple amplifier to generate a 0-3.3 Volt signal and read this using one of
the on-board 12-bit analogue inputs on the VM2.

Use a precision thermistor bead and a resistor in a potential divider, feed the voltage into
the on-board 12-bit analogue inputs (0.2°C, or better, accuracy is possible). We
publish a linearisation function to convert ADC readings to temperature.

Read a thermocouple directly using an external 16-or-more-bit external ADC on the
I2C Bus or SPI Bus. A thermistor can be used to measure the cold junction

195B: How Do I ... ?

© 2018 Micro-Robotics Ltd

temperature for compensation.

Sleep with very low Power

It is possible to put the controller into 'Stop Mode' - where it will consume around 55
microamps. You can wake it from Stop Mode either a number of seconds into the future, or
using a digital input channel. See RealTimeClock.Timeout in the Venom2 Help file.

Use Files

Use the FileSystem object to create files in RAM.

196 Appendices

© 2018 Micro-Robotics Ltd

C: Speed of Execution

Venom2 is a semi-compiled language, like Java. This means it compiles your code to a set of
bytecodes. These codes are then interpreted by the Venom runtime system to run your
application. Semi-compiled code runs faster than interpreted code, but not so fast as native
machine code.

Typically, a single bytecode will execute in 0.7µ S to 1.5µ S on the VM2.

A bit of code like a := a + 1 will take ~4.5 µ S.

A simple message sent to an object takes something like 6uS.

Measuring Execution Times

The following code allows you to measure the execution time of bit of Venom code.

To measure_time(n,c)
 Local t
 AutoDestruct
 Local stop_watch := New StopWatch
 stop_watch.Reset
 Repeat n
 [
 ;commands to be timed
]
 t := stop_watch.Time
 Print (t * 1000 / n - c):10:4, " microseconds", CR
End

The parameter n is the number of times the loop is repeated - increasing it increases the accuracy
of the result. The parameter c is a constant adjustment that is used to take into account the time
taken to execute the Repeat command.

Firstly, the procedure should be run with n = 100000; c = 0 and the Repeat command empty.
This will then print the value to use for c.

Then put the code under test into the Repeat, choose a value of n, and use the value of c you just
found. E.g.

measure_time(100000,2.42)

197D: Robust Applications

© 2018 Micro-Robotics Ltd

D: Robust Applications

This section details steps you should take to make your Venom application least likely to fail in
the field.

Protecting the Application Code

While you are developing your application program, your procedures are held in battery-backed
RAM. This is fine for development, but not suitable for a finished application in the field: there
are many ways to lose a program from battery-backed RAM.

Finished applications should be copied into Flash memory - which can hold it safe against loss
due to processor crashes or battery failure.

See the system message Protect.

Protecting Against Errors

Runtime errors can stop a program from running correctly and cause it to halt forever. This is
usually unacceptable for an embedded control application in the field.

To prevent errors from causing your program to halt, use Try/Catch to trap any errors that you
know how to handle.

To deal with errors that you haven't thought about, and so don't know how to handle explicitly,
use the ErrorAction system message.

System.ErrorAction := 1

This restarts the Venom application on any error not handled by Try/Catch.

The default startup procedure defines a 'safe' setting for ErrorAction: it is set to restart on errors
if the Program Mode switch is set to 'Run'.

Serial Break

Most applications should turn off the Ctrl-C Break function, as this could potentially halt an
application. Ctrl-C Break is treated as a runtime error, so if ErrorAction is set, the Venom
application will be restarted. To turn off Ctrl-C Break, use

Serial.Escape := False

Note that this will also turn off Ctrl-T task listing.

If you want to avoid your application halting on receiving a Ctrl-C character (perhaps due to
noise) but want to keep Ctrl-T enabled, you can leave serial.Escape set to True, but make sure
ErrorAction is set to 1 to at least ensure your application restarts on receiving a Ctrl-C
character.

198 Appendices

© 2018 Micro-Robotics Ltd

Memory

Memory leaks

A memory leak is where an incorrectly written program uses up the RAM memory in your
controller.

It's hard to spot memory leaks through normal testing as, if the leak is a slow one, you might not
notice it for a long time. However, in the field, your application may fail after a period because it
eventually runs out of memory.

If you have ErrorAction set correctly (e.g. leave the default startup procedure unchanged) then
your application will restart, which may lead to a good recovery.

However it's much better to check for memory leaks and fix them, before the application is
released.

A typical memory leak looks like this:

To proc
 Make b Buffer(Int 8)
 ... ; further operations using b
 ...
End

If proc is called repeatedly, and the Buffer, b, is not killed when proc exits, then you have a
memory leak: each time another buffer is made, memory is taken that is never given back to the
system.

There are two different ways to avoid the problem in the example above:

1. Make the Buffer once only, say in your init procedure, and then use it wherever it is
needed.

2. Create a temporary buffer object in the procedure and remove it after you have used it.
See here for more details.

Garbage scanner

You can detect if you have a memory leak by using the 'Garbage scanner' built into Venom. This
will detect any memory that has leaked from the system, and also tell you what the leaked blocks
where, if possible. This can help you find the leak and solve it.

This a typical output showing lost buffers. The unknown blocks are also part of the buffers but
the system wasn't able to identify them:

199D: Robust Applications

© 2018 Micro-Robotics Ltd

 36 bytes at $6400096C: Buffer?
 264 bytes at $64000998: <Unknown>
 36 bytes at $64000AA8: Buffer?
 264 bytes at $64000AD4: <Unknown>

To find out more about the Garbage Scanner and how to use it see the Venom2 Help File.

Code image validation

It is possible (though very unlikely) that when you download the Venom2 Language and
Operating System into your VM2, that the code gets corrupted.

When we release a new version of Venom2 we include a system checksum to validate the code
image. This is available using OperatingSystem.Checksum and .Valid messages.

To make sure your Venom2 operating system has been downloaded correctly you might include
a line like this in your application code's init procedure:

To init
 If system.Valid
 [
 ... go to normal operation...
]
 Else
 [
 Print To display, "Corrupt OS!"
 ;... and any other actions you might need to take.
]
End

Watchdogs

A watchdog is a hardware device that has control of the reset input to the controller. If the
program does not 'kick' the watchdog every so often, then the watchdog will reset the controller.
 This is to halt and restart a crashed microcontroller.

In the VM2 controller, the Venom task-scheduler kicks the watchdog. This is sufficient to guard
against most bugs in the Venom language, or processor crashes. However, the highest security
applications may require extra watchdogs at the application code level. You can write these
using Venom code.

SUMMARY

Check your code for memory leaks.

Always 'ROM' your application code.

200 Appendices

© 2018 Micro-Robotics Ltd

Something like the following lines should appear near the start of any Venom2 application
released into the field. Some of these will have been taken care of by the default startup
procedure – List startup to find out.

system.ErrorAction := 1 ;Restart on errors (taken care of
in the default startup procedure)
...
Serial.Escape := False ;Disable CTRL-C Break

201E: ASCII Character Set

© 2018 Micro-Robotics Ltd

E: ASCII Character Set

The following table shows all of the characters in the ASCII character set, giving the decimal
character number, the hexadecimal character number and the character itself. In the case of
unprintable characters, either a description is given, or the box is left blank.

Note: although character 13 is called CR in ASCII, Venom2 uses the character 10 for the
Carriage Return character internally, to maintain consistency with as many other systems as
possible.

202 Appendices

© 2018 Micro-Robotics Ltd

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

 0 0 NUL 32 20 SPC 64 40 @ 96 60 `

 1 1 33 21 ! 65 41 A 97 61 a

 2 2 34 22 " 66 42 B 98 62 b

 3 3 BRK 35 23 £ 67 43 C 99 63 c

 4 4 36 24 $ 68 44 D 100 64 d

 5 5 37 25 % 69 45 E 101 65 e

 6 6 38 26 & 70 46 F 102 66 f

 7 7 BEEP 39 27 ' 71 47 G 103 67 g

 8 8 BS 40 28 (72 48 H 104 68 h

 9 9 41 29) 73 49 I 105 69 i

 10 A LF 42 2A * 74 4A J 106 6A j

 11 B 43 2B + 75 4B K 107 6B k

 12 C FF 44 2C , 76 4C L 108 6C l

 13 D CR 45 2D - 77 4D M 109 6D m

 14 E 46 2E . 78 4E N 110 6E n

 15 F 47 2F / 79 4F O 111 6F o

 16 10 48 30 0 80 50 P 112 70 p

 17 11 XON 49 31 1 81 51 Q 113 71 q

 18 12 50 32 2 82 52 R 114 72 r

 19 13 XOFF 51 33 3 83 53 S 115 73 s

 20 14 52 34 4 84 54 T 116 74 t

 21 15 53 35 5 85 55 U 117 75 u

 22 16 54 36 6 86 56 V 118 76 v

 23 17 55 37 7 87 57 W 119 77 w

 24 18 56 38 8 88 58 X 120 78 x

 25 19 57 39 9 89 59 Y 121 79 y

 26 1A 58 3A : 90 5A Z 122 7A z

 27 1B 59 3B ; 91 5B [123 7B {

 28 1C 60 3C < 92 5C \ 124 7C |

 29 1D 61 3D = 93 5D] 125 7D }

 30 1E 62 3E > 94 5E ^ 126 7E ~

 31 1F 63 3F ? 95 5F _ 127 7F DEL

203E: ASCII Character Set

© 2018 Micro-Robotics Ltd

204 Appendices

© 2018 Micro-Robotics Ltd

F: Optimisation

Optimisation is the automatic or manual alteration of code to make it run faster, occupy less
space, or use less electrical power.

Code Optimisation

The Venom compiler automatically optimises the Venom code you write.

Because Venom2 is semi-compiled, the size of the code it produces is typically much smaller
than either assembly code or fully compiled code.

Venom also does some more explicit optimisation. Currently this is limited to constant folding.
Constant folding is where an operation on one or more constants may be calculated at compile
time rather than at run time. For example, the first line could be written as the second, but the
first line may be more maintainable.

a := 5 * 4
a := 20

When Venom compiles these lines of code, it is able to notice the possible optimisation, and
compiles as if the second line had been written.

Constant folding is performed on most operations that involve only constants. In order to give
the compiler the best chance of folding an expression, enclose the operations in parentheses:

5 * a * 4 ;will not be folded (the compiler's not that
clever!)
5 * 4 * a ;might be…
a * 5 * 4 ;might be…
a * (5 * 4) ;definitely will be.

Power saving

The Venom operating system automatically uses the HALT instruction on the host processor, if
there is a suitable one available. The controller is put into a power-saving mode if there are no
tasks requiring any processing power. Interrupts are not affected as they automatically wake the
controller from its HALT instruction.

In order to make best use of this, make your tasks wait if they can do so without compromising
the responsiveness of your code.

For example you could wait for a digital input like this:

While dig.NotAsserted []

However if you don't mind being up to 10mS late in the detection of the input you can save
power by using something like

While dig.NotAsserted [Wait 10]

The Wait command will let the controller idle while it's waiting.

Await will also allow the controller to sleep while it's waiting, with a minimal loss of

205F: Optimisation

© 2018 Micro-Robotics Ltd

responsiveness:

Await dig.Asserted

All commands and messages in Venom that are waiting for an interrupt or for a millisecond time
of any sort will allow the controller to idle. Other things will also allow idling.

Examples are Wait, Every, Swap, serial.Get, keypad.Get, any_object.Lock…

You can check the effect of running various bits of code if you have a power supply with a
current meter on it.

Defined logic levels

There are more power savings to be had by making sure that every IO pin on the VM2 is pulled
to a defined logic level. This is most important if you are have a very power sensitive application,
especially one that uses stop mode.

The operating system message system.Low will set all uninitialised IO pins to the state 'input
pulled low' to make sure every uninitialised IO pin is pulled to a defined state.

Usually, the best time to call this is at the end of your init procedure, after all the IO objects have
been defined.

(Your init procedure is called by the default startup procedure).

206 Appendices

© 2018 Micro-Robotics Ltd

G: Startup Sequence

The diagram shows what happens when Venom2 starts.

PROG MODERUN MODE

Clear Memory was
'S' for 'Skip Startup'?

Application
in ROM?

Wipe main RAM

Read App
From ROM

Clear Memory Y N S? __

Y

N, S

Read App
From ROM

Validate code
in RAM*

Report RAM size

Command line**
-->

Validate code
in RAM*

Wipe main RAM

Create Default
Startup etc.

Run 'startup' ...
... and application

Create some
Default Objects

Reset

Application
in ROM?

Internal init
& Checks

*'Validate code in RAM' means check that the controller's heap-memory, global variables etc.
contain valid data. If not, then reset them.

**All routes through the flow diagram end up at the command line, unless startup never returns –
i.e. the application code loops forever. Application programs in general should never terminate
to the command line.

207Not using VenomIDE

© 2018 Micro-Robotics Ltd

Not using VenomIDE

This is the getting started guide for users who can't use the VenomIDE development tools
for Windows, and shows you how to use a terminal emulator and text editor to program
your Venom-based controller.

You might need to use this method if you have a MAC or UNIX computer, or if you are
using a computer that doesn't have VenomIDE installed.

Unlike most application development systems, this one runs on the target hardware in real time.
This has many advantages when it comes to learning the language and debugging.

To start learning about the Venom language you need to be able 'talk' to the controller running it.
 This is normally done over an RS232 serial link using your own personal computer - your
computer will need to run a terminal emulator program. Suitable terminal emulators are often
available for free.

What you will need

In order to start learning about Venom, you will need a minimum of:

A Venom-based controller, such as VM2

You may need an application board for the controller

A suitable power supply

An RS232 lead to connect the controller to your computer, or to a USB-Serial converter on
your computer

A PC running terminal emulation software

Micro-Robotics supplies starter kits containing all you need, except the personal computer and
the terminal software.

Connecting it all together

The exact details of connecting the controller to a personal computer are given in the Getting
Started Guide for the particular controller configuration you have. The Getting Started Guide
will take you as far as seeing the Venom startup message:

VM2 Control Computer running Venom2 at 72MHz
Version 2011 02 10
Copyright 2008-2011 Micro-Robotics Ltd.
Clear RAM?

As this is the first time you have used the system, type in a Y. This tells the controller to clear its

208 Appendices

© 2018 Micro-Robotics Ltd

memory.

The cursor will be positioned just after an arrow: -->. This arrow is called the 'prompt' and
means Venom is waiting for your instructions.

Simple Commands

Try pressing Carriage Return a few times. You will notice that Venom replies with a prompt on
a new line. This is a quick way of checking that Venom is talking to you.

Now try typing the following (press Carriage Return at the end of the line). You type the text
after the --> prompt.

-->Print "hello"
hello-->

Venom responds to the command by printing the string you gave it back to your terminal
window.

Now try the command below. Don't forget to type the dot between the two words.

If you make a mistake in your typing, then you can use the Delete or Backspace key to remove
the characters you have entered.

-->led.On
-->

To see the effect of this command you will need to be able to see the LED on the controller.
The LED on the board will light up. If you repeat the command using the word Off instead of
On, the LED will be turned off.

Objects

An object is a part of the Venom language that will control and monitor a device in response to a
fixed set of messages. In the example above, LED was the object responsible for controlling the
LED device on the controller. On was the message sent to the led object. The dot (.) tells
Venom that a message follows. Objects will be covered in much greater detail later. For now it
is enough to know what it looks like when an object is being used.

Incidentally, you don't have to type commands in exactly as our examples – when accepting
commands, Venom is case-insensitive.

The Command Line

The command line is the text that you type in at the --> prompt. The term will be used
frequently throughout this manual.

209Not using VenomIDE

© 2018 Micro-Robotics Ltd

Errors

If you made any mistakes in the examples above, Venom probably issued an error message. In
case you haven't seen an error message yet, type in led.Onf. You will see:

-->led.Onf
 ^^^
Syntax Error: Expected message name.
Command line not executed.
-->

Venom issued a Syntax Error message, meaning it didn't understand the command. The
offending line is listed together with a pointer to where Venom thinks the error is (the ^^^
characters), and the reason Venom didn't like it.

Syntax errors like the one above will show up when your code is downloading. There is another
type of error that can occur – runtime errors. These will be dealt with later.

Simple Procedures

The commands shown above were very simple. To perform more complicated tasks,
commands may be grouped together into procedures. Try the following line, taking care to
include the dots and spaces.

-->To blip led.On Wait 1000 led.Off End
 Procedure defined
-->

The keywords To and End tell Venom that the commands in-between should be treated as a
single command (or procedure) called blip. Incidentally, the Wait 1000 command tells Venom
to do nothing for 1000 milliseconds.

Try issuing blip as a command:

-->blip
-->

The LED should turn on for one second then turn off again. The new prompt will only appear
once the procedure has finished.

Blip could also be issued as a command from within a procedure. The following procedure
'calls' blip once, waits for a second and then calls blip again. Try entering it and then typing
double.

-->To double blip Wait 1000 blip End

It is not necessary to enter procedures on a single line. The blip procedure could have been
entered as below, or in any form where the spaces are replaced by carriage returns.

210 Appendices

© 2018 Micro-Robotics Ltd

-->To blip
02>led.On
03>Wait 1000
04>led.Off
05>End
Procedure Defined
-->

You will notice that the prompt is different during entry of the procedure. This tells you that
Venom will not act on the commands you type immediately, and also lists the line numbers of the
procedure.

Listing Procedures

Listing back of procedures is not fully supported. If you type List blip you will get a short
summary of the procedure, somewhat like this:

-->List blip
;To blip
; No source list [36 bytes @$260532]
;End-->

Editing Procedures

Simple procedures may be typed in at the command line as shown above. When procedures get
larger it is useful to be able to edit them.

This is best done with a text editor. Suitable text editors are usually available for free.

Type the code of the procedure into your favourite text editor, and make sure it's what you want
it to look like. Then Cut-and-Paste the text into the window of your terminal emulator. This is
equivalent to typing in the procedure, but much faster.

Most Windows® programs allow the use of the shortcut keys Ctrl-C and Ctrl-V for Cut-and-
Paste.

Any syntax errors in the code will be indicated as the text downloads, and you can go to the
editor to correct them.

PROGRAM command

If you want to download one or more whole files full of procedures then it helps if you put two
special commands around all your code. Put them on the first and last lines in the file if you can.
Note that you can fill in the name of you file if you like (or just use any name you like).

PROGRAM "your_code.txt" ; On the first line of your file.

(all your procedures)

211Not using VenomIDE

© 2018 Micro-Robotics Ltd

PROGRAM End

Now you can download the whole file or files using Cut & Paste, or by other means.

Using PROGRAM...PROGRAM End makes the download easier to understand, and will make
error reports more meaningful: the file and line number of the error will be shown.

Help

You can download the Help Files for the Venom language from our website - they are available
in Windows Help format and PDF.

Venom2 also has a simple on-board help system. This allows you to interrogate the runtime
system. It may not always have the information you are looking for, but it can be useful. Try this:

-->Help led
It is the OnBoardLED. Try PRINTing it for more info.
-->Help put
'Put' is a message name.
-->

The second example is a useful way to check that a word you want to use is not already
reserved by Venom.

In Venom, printing something will often give you information about it. System is a predefined
object that represents the Venom system. For example:

-->Print system
Symbol table 61 bytes
9 Global variables
108880 of 110594 bytes free in heap (biggest block 108490)
NV RAM area 0 bytes (0 unused)

SUMMARY

It is possible to program a VM2 controller without using VenomIDE - just using a terminal
emulator and a text editor.

You can issue commands on the command line and enter simple procedures.

You can download your program files using Cut and Paste from a text editor to a terminal
emulator.

What next?

You should now go on to read the next chapter of Venom language tutorial, Repeating and
Deciding.

212 Appendices

© 2018 Micro-Robotics Ltd

Index 213

© 2018 Micro-Robotics Ltd

Index

- # -
#DEFINE 74

#IF, etc. 77

- / -
/ 20

- A -
ABS operator 20

Absolute value 20

Accessibilty 175

Active variables 45
method 170

Addition 20

AlphaLCD object 122

Analogue object 120

AND 84

AndAlso 23

Application
developing 63

protect against erasure 160

Arithmetic 20

Array 25
RAM copy of 143

variable data 144

Array object 142

AS FLOAT 22

AS INT 22

ASCII
character set 201

printing values 29

Assignment 16

Atomic operations 98

Attempt to lock object held by dead tas' 112

AWAIT 14

- B -
Becomes equal to 16

BEEP 29

Binary 80

Bitwise operators 84

Blocks
of program statements 12

Boolean operators 23

BREAK 15
stop your program 10

Buffer 25
text 139

Buffer object 136

- C -
Calendar 145, 149

Calling
procedures 34

Carat 21

CASE, SELECT 14

CATCH 68, 197

Catching errors 68

Character
constants 81

Checklist
development cycle 192

Choosing 14

CHR 29

Class 163
user, inheritance 171

Clock
realtime 145

system master frequency, setting 162

Code
application, files 53

Colon operator 29

Commenting code 35

Conditional compilation 77

Constant
folding 75

Constants 18
named 19

Constants - quoted strings 18

Venom2 Tutorial214

© 2018 Micro-Robotics Ltd

Cosine 21

CR 29

Creating
objects - how to 42

objects - when to 43

Ctrl-C 10, 197

- D -
Data

structure 163

Data hiding 175

Data structures
array 142

buffer object 136

string object 133

text buffer 139

Date
altering 152

calculator 149

limits 148

setting 151

DateTime object 149

Day of the week 150

Deadlock 108

Debugging 64
comments - use of 64

finding source of runtime errors 65

HELP 66

listing tasks 66

PRINT - use of 64

DEFINE 74

Deleting
objects 46

procedures 41

Developing
an application 63

Development
checklist 192

Development environment 53

Die message 46

Digital object 117

DIV 20

Divide 20

Division 20

DO 13

Downloading

code 53

- E -
Editing

code 53

ELSE 12

Embedded text 81

END
of procedure 33

EOR 84

Equal to operator 22

Equals 16

ErrorAction 68, 159, 197

Errors 67
catching 68

during Initialise of user Class 183

protecting against 197

reports 67

reset on 68, 159

runtime 67

runtime - locating 65

syntax 3

Escape
sequences - characters 83

stop your program 10

Events
timing of 194

EVERY 11

Exceptions 67, 69
tidy up after 72

Exclusive OR 84

Exit
from procedure 37

Exp 21

Expressions 19
object result 91

pointer 86

sending message to 92

- F -
FALSE 22

FAQ 193

FIFO 136

File 25

File extension

Index 215

© 2018 Micro-Robotics Ltd

File extension
.vnm 3

Files 195
application code 53

FILO 138

Flash memory
protecting your application 35

FLOAT 22

Floating point numbers 18

FOREVER 10

Format
floating point printing 30

integer printing 29

string printing 31

Functions 37

- G -
Greater than 22

- H -
Handling errors during Initialise 183

Handling exceptions 69

Help 7

Hexadecimal 80

Hiding
data 175

- I -
I2C Bus 46

AlphaLCD on 122

analogue channel numbering 120

analogue objects 120

Digital channel numbers 118

Digital objects 117

Keypad on 124

printing 90

Venom channel numbers 115

IF 12

Indentation 13

INDEX 11

INDEX0 11

Inheritance 171

init 43
example 50

Initialise method
errors during 183

INT 22

Integers 18

Interface
user 194

Interface testing 188

INV 84

IsFalse 23

- K -
Keypad

InputBuffer 126

number entry 128

object 124

Keywords
printing 96

- L -
Lazy evaluation 23

LCD
alphanumeric 122

LED 51
object 131

Less than 22

LIST
macros 75

names 17

procedures 40

TASK 60

LOCAL 38

Local variables
declaring, defining 38

initialising 38

lifetime 38

Locking 104
critical areas# 111

deadlock 108

ending tasks 109

implicit 104

incremental 105

internal operation 112

non-blocking 107

objects 104

owner 108

Venom2 Tutorial216

© 2018 Micro-Robotics Ltd

Locking 104
restorative 106

Log 21

Logical operators 23

longjmp() - equivalent 69

Looping
breaking out of a loop 15

DO 13

loop count (INDEX) 11

timed (EVERY) 11

UNTIL 13

WHILE 13

- M -
MAC OS 207

Macros 19, 74
creating 74

empty 76

limitations 76

listing 75

nesting 75

redefining 75

removing 75

Magnitude - ABS 20

main
example 50

MAKE 42

Making objects 42

Member types 165

Memory
direct access to 86

Memory leak 92, 198

Messages
primitive 176

sending 44

Method
active variable 170

Methods
defining 168

special, in user classes 178

Minus
unary 20

MOD 20

Mode
program 49

run 50

Modulus 20

Multiple choice 14

Multiplication 20

Multitasking
idling 103

introduction 56

listing tasks 60

local variables 103

locking 104

number of tasks to use 58

sharing resources 100

signalling between tasks 100

simple model 61

stating a task 58

stopping tasks 59

synchronising tasks 101

the prompt 59

when to use it 56

- N -
Names

variable 16

NEW 91, 92

NIL 90

Non volatile storage 193

NOT (See INV) 84

Not equal to operator 22

Number entry
keypad 128

Number ranges (integer and floating point) 18

NumberReader object 128

- O -
Object

AlphaLCD 122

Analogue 120

Array 142

Buffer 136

Buffer, text 139

DateTime 149

Digital 117

Keypad 124

NumberReader 128

OnBoardLED 131

OperatingSystem 159

Index 217

© 2018 Micro-Robotics Ltd

Object
SerialPort 157

Stopwatch 156

String 133

Timer 154

Objects
creation - how 42

creation - when 43

introduction 42

removing 46

temporary 92

tutorial introduction 115

OnBoardLED object 131

OperatingSystem object 159

Operators
Arithmetic 20

bitwise 84

Boolean 23

logical 23

power 21

Precedence 21

Relational 22

trigonometric 21

type conversion 22

Type query 25

Optimisation 204

Optional parameters 79

OR 84

OrElse 23

- P -
Parameters

message 45

pass by reference 86

pass by value 36

procedure 36

Pausing execution 14

Pointer 86
expressions 86

to a procedure 88

to an object 87

Port
serial 157

Power of operator 21

Power saving 204

Precedence 21

Precision
floats 18

Pre-emptive 98

Preprocessor commands
#DEFINE 74

#IF, etc. 77

Primitive messages 176

PRINT 29
how it works 96

keywords 29, 96

PrintF message 97

redirection 95

PRINT TO (an object) 95

PrintF 97

Printing 29
date and time 146, 151

floats 30

integers 29

objects 90

strings 29

strings - fragments of 31

Private 175

Procedures 32
calling 34

comments 35

defining, simple 33

deleting 41

exiting from 37

held in RAM 35

listing 40

local variables 38

naming 34

parameters 36

pointers to 88

pre-defined 41

recursion 39

returning values from 37

Processing power 98

PROGRAM
not using VenomIDE 210

Program mode 49

Prompt
command line 3, 207

command line, don't allow 50

procedure entry, changing 33

tasks running 59

Protect

Venom2 Tutorial218

© 2018 Micro-Robotics Ltd

Protect
application code 35, 160

Protected 175

Protected Application Area 35, 160

Prototype
method 185

Public 175

Pulses
generate 194

measure 194

- R -
Real time clock / calendar 145

Records
template, using a Class 179

Recursion 39
in methods 185

Redirection 95
of messages 186

Remainder 20

REPEAT 10

Reset
LED behaviour 131

on error 68, 159

on watchdog 199

operating system message 162

Return
value from procedure 37

RETURN keyword 37

Robust application design 197

Round Robin 98

Run
operating system message 161

Run mode 50

Runtime errors 65, 67

- S -
Seconds

Venom 148

SELECT CASE 14

Semaphore object 111

Sequencing 194

Serial
break 197

Escape Message 197

Serial (communications) 157

SerialPort object 157

setjmp() - equivalent 69

Setting a variable's value 16

Shift left and right 84

Short-circuiting evaluation 23

Sine 21

Sleep - low power 195

Speed
of execution, measuring 196

of VM2 system clock 162

Sqrt 21

Square brackets 12

Square root 21

START - starting a task 58

Startup
procedure 44, 48

sequence 206

STOP - stopping tasks 59

Stop your program 10

Stopwatch object 156

String
constant, concatenation 82

constants 81

constants, on the command line 84

escape sequences 83

handling 193

object 133

String constants 18

Structure
data 163

Style tider 17

Subtraction 20

SWAP keyword 101

Switch
Venom's version of C's switch() 14

System
OperatingSystem object 159

- T -
Task

atomic operations 98

critical areas 111

ending 109

idling 103

latency 98

Index 219

© 2018 Micro-Robotics Ltd

Task
listing 60

local variables 103

locking 104

manager 98

number to use 58

prompt => 59

sharing resources 100

signalling between 100

simple model 61

starting 58

stopping 59

SWAP 101

swap timing 98

synchronising 101

when to use tasks 56

Temperature 194

Temporary objects 92

Terminal emulator 207

Text
handlers 95

manipulation 193

THEN 12

THROW 68

Time
venom seconds 148

Timer object 154

Timing
events 194

task swap 98

Tips 54

TO
define procedure 33

print redirection 95

Trig functions 21

TRUE 22

TRY 68

Tutorial
new users 3

Type
changing 25

of a variable, querying 25

TYPEOF operator 25

- U -
Unary minus 20

UNIX 207

UNTIL 13

User interface 194

User-defined objects 163

- V -
Validation

OS code image 199

Variables
active (inside object) 45

global 16

initialising 38, 80

local 38

naming 16

Venom Seconds 148

VenomIDE 53
not using 207

- W -
WAIT 14

Watchdog 199

WHILE 13

	Venom2 Tutorial
	Getting Started
	Part 1:Venom Language Tutorial
	Repeating and Deciding
	Repeating Commands: Repeat, Forever
	Stopping your program
	Timed Loops: Every
	Loop Count: Index, Index0
	Grouping Commands: []
	Making Decisions: If; Else
	Indentation
	Repeating Decisions: While & Do
	Multiple choice: Select Case
	Waiting
	Breaking out of Loops: Break
	SUMMARY

	Variables and Expressions
	Variable Names
	Listing Names
	Integers and Floating-Point Numbers
	Constants
	Named Constants
	Expressions
	Arithmetic Operators
	Precedence
	Type Conversion Operators
	Relational Operators
	Boolean Operators
	Another look at Index
	Changing the type of a variable
	Sets of Data
	SUMMARY

	Printing
	Strings
	Print Keywords
	Printing Integers
	Printing Floats
	Printing a Fragment of a String
	SUMMARY

	Procedures
	Defining Simple Procedures
	Procedure Names
	Calling Procedures
	Comments
	Procedures are not forgotten
	Passing Information to Procedures: Parameters
	Procedures that Return Information
	Exiting Procedures
	Local Variables
	The Lifetime of Local Variables
	Recursion
	Listing Procedures
	Deleting Procedures
	Predefined Procedures
	SUMMARY

	Objects
	Creating Objects
	When to create Objects
	The Startup Procedure
	Using Objects
	Message Parameters
	Active Variables
	What Objects are available?
	The I2C Bus
	Removing Objects
	Trouble shooting
	SUMMARY

	The Startup Procedure
	Program mode
	Run mode
	Don't let your application end
	Example Init and Main
	More on the LED
	SUMMARY

	Your Development Environment
	Tips and Tricks

	Multitasking
	When to use Multitasking
	Without multitasking
	With multitasking

	How many Tasks can I use?
	Starting Tasks
	Keep Tasks Simple
	The Prompt
	Stopping Tasks
	Listing Tasks
	Our Simple Multitasking Model

	Developing an Application
	Debugging
	Print
	Commenting out
	Finding errors in your source
	Listing tasks
	Help
	SUMMARY

	Errors and Exceptions
	Runtime Errors
	Reset on Error
	Catching Errors
	Exceptions
	Tidying up after exceptions
	SUMMARY

	Macros
	Creating Macros
	Nesting Macros
	Listing Macros
	Constant Folding
	Redefining Macros
	Removing Macros
	Null Macros
	Macro Limitations
	SUMMARY

	Conditional Compilation
	Optional parameters
	Further Expressions
	Initialising Global Variables
	Using Hexadecimal and Binary numbers
	Characters and String Constants
	String constant concatenation
	Escape sequences
	Strings on the command line

	Bitwise Operators
	Memory Expressions
	Pointer Expressions
	Procedure Pointers
	Parameters to procedure pointers

	Further Objects
	Printing Objects
	Using Nil
	Object Expressions
	Sending Messages to Expressions
	Creating Temporary Objects

	Further Printing
	Text Handlers and Redirection
	Further Printing Keywords
	How PRINT works
	PrintF

	Further Multitasking
	Task Management Scheme
	Atomic operations
	Processing Power and Task Latency
	Task Objects
	Sharing Resources
	Allocate Resources to Tasks?
	Easily-Shared Resources
	Signalling between Tasks
	Synchronising Tasks
	Sharing other resources

	Idling
	Local Variables and Tasks

	Locking
	Implicit Locking
	Locking Objects
	Incremental Locking
	Restorative Locking
	Non-Blocking Locking
	Lock Owner
	Deadlock

	Ending Tasks
	Critical Areas
	Internal Operation

	The End

	Part 2:Object Tutorial
	Digital
	Digital channel numbering
	Similar Object Types

	Analogue
	Input
	Analogue channel numbering
	Accuracy and Resolution
	Output
	Similar Object Types

	AlphaLCD
	Location numbers
	Similar Object Types

	Keypad
	Getting Key presses
	Keypad InputBuffer
	Updating

	NumberReader
	Creation
	Conversion
	Reading Numbers
	Default Value
	More

	OnBoardLED
	Messages
	Flashing

	String Objects
	More printing
	Finding text

	Buffer
	Diagram
	Data types
	Filling a buffer
	Printing a buffer
	Reading a buffer
	Flushing a buffer
	Other Buffer messages
	How big can a buffer get?

	Text Buffers
	Printing to and from a Text Buffer
	Selecting what to print
	Inserting text
	Finding text

	Array
	Creating Constant Arrays
	Auto fill
	Array of pointers
	Array of strings
	Printing
	RAM copies of Arrays

	Variable Arrays

	RealTimeClock
	Creation
	Clock not set
	Dividing up the time
	Setting the Clock
	Printing the Date and Time
	'Venom Seconds'
	Calibration
	Date Extent

	DateTime
	Creation
	Spurious Dates
	Days of the Week
	Number ranges
	Printing a DateTime
	Assigning a date and time
	Altering the date and time

	Timer
	Other Messages
	Printing

	Stopwatch
	Printing

	SerialPort
	Messages

	OperatingSystem
	Operating System Messages
	ErrorAction
	RunMode
	Debug
	Free
	Protect
	Run
	Reset
	Speed
	PRINT

	Creating new classes
	Member types
	Methods
	Inheritance
	Accessibility
	Class-default messages
	Special methods
	Classes as Records
	Advanced topics

	The End

	Appendices
	A: Development Checklist
	B: How Do I ... ?
	Store Non-Volatile Data
	Manipulate Text
	Enter Numbers on a Numeric Keypad
	Deal with Calendar Dates
	Create User Interfaces
	Time events
	Talk to serial devices
	Generate Pulses
	Measure Pulses
	Measure Temperature
	Sleep with very low Power
	Use Files

	C: Speed of Execution
	D: Robust Applications
	Protecting the Application Code
	Protecting Against Errors
	Serial Break
	Memory
	Code image validation
	Watchdogs
	SUMMARY

	E: ASCII Character Set
	F: Optimisation
	G: Startup Sequence
	Not using VenomIDE

