Venom?2 Tutorial

Written by Karl Lam, Micro-Robotics Ltd

© 2018 Micro-Robotics Ltd

Contents |

Table of Contents

Venom?2 Tutorial 1
Getting Started 3
Part 1:Venom Language Tutorial 9
Repeating and DECIAING . .ovuuiiii et 10
Variables and EXPreSSIONS .o e 16
L L 0L (] o Yo TR PP TPPTRPPIPIN 29
[Ee o= o [€= PSPPI 32
(0] = o £ P 42
The StartuUp PrOCEAUIE ... e e e e e e e e e eanes 48
Your Development ENVIFONMENT ..ot 53
MUITTEASKING - et e 56
Developing an ApPPliCatioN ..o 63
(7= o U o o 1 o o [P 64
Errors and EXCEPLIONS ..ovuiiiiiiiii ettt et et 67
Y E= X o] 0 1 PRSP 74
Conditional CompPilation ..o e 77
(O] [To] =N o F-Y = Va1 L= £ 79
FUMNET EXPIESSIONS .ottt ettt e e et e e e e et e e eees 80
FUNTNET OB CTS .ottt 90
L L d LY O = 1] 4 o PP 95
FUIher MUIITASKING ..ivniiii e e e e e e e e e e e et e e e e eens 98
[0 Tod (] o o [P P TP PTRPPT 104
LI = = o PPN 114
Part 2:Object Tutorial 115
3 o 1 = L 117
ANBIOGUE .t 120
ALPRNALCD oot 122
=74 - Yo 124
NUMBEIREAAET . ettt e et eaa s 128
L0] = Lo = ¥ o |0 = PP 131
] L1 g Lo T O o] =T o3 £ PP 133
BT O e et 136
N £ - PP PPN 142

© 2018 Micro-Robotics Ltd

Venom?2 Tutorial

L E = Y I 1 0= O o T o 145
(D= = 0 = PP 149
I 1.1 PP 154
IS (0] 1T 1 (o o P 156
Y= = L = o 157
OPEIAtINGSYSIEIM oottt et e et et e e e e e 159
CrEaliNg NEBW ClaSSB S iiuu ittt ettt e e et e e e e e e e e e e e et e et e ataeaanas 163
LI L3 =1 Yo I TP PP PP TUPTRPPRPN 190
Appendices 191
A: Development CheCKlist 192
B HOW DO | ... 2 e e 193
(O3S o T=Y=To I) Sl ot o UL 11 o o 196
D: RODUSE APPIICALIONS ..t 197
o N O | O g - T = (ot (=T G ST =) S PP 201
L @ o 0 1 =T 1 o 204
CH Y - g 0] oIS T=T o [UT=] o o =PRI 206
NOT USING VENOMIDE ... ittt et e e ennns 207
Index 213

© 2018 Micro-Robotics Ltd

Venom2 Tutorial
Written by Karl Lam, Micro-Robotics Ltd

Document D043 Version 2018 01 02
© 2018 Micro-Robotics Ltd
All rights reserved

WARNING: Users of Micro-Robotics Control Equipment should be aware of the possibility of
a systemfailure, and must consider the implications of such failure. Micro-Robotics Ltd. can
accept no responsibility for loss, injury, or damage resulting from the failure of our equipmert.
Use of our products in applications where their failure to perform as specified could result in
injury or death is expressly forbidden.

Micro-Robotics Ltd.

The Old Maltings

135 Ditton Walk
Cambridge

CB580QB

Tel: +44 (0) 1223 523100
Fax: +44 (0) 1223 524242
sales@microrobotics.co.uk
Www.microrobotics.co.uk

© 2018 Micro-Robotics Ltd

Getting Started

This section introduces you to the Venoml DE development system, and aso to alittle of the
Venom?2 language.

If you can't or don't want to use VenomiDE, please start the tutorial here.

Getting started guide

The exact details of connecting your VM2 controller to your PC are given in the paper
document Getting Started Guide in the starter kit. Please refer to this now, if you haven't
aready. The Getting Started Guide will take you as far as seeing the Venom startup message
in the Terminal window:

VM2 Control Conmputer running VenonR at 72MHz
Version 2013 06 03

Copyright 2008-2013 M cro-Robotics Ltd.

Cl ear RAW?

Type Y — thistells the controller to clear its RAM — the memory where programs are held during

developmert.
You may need to click in the terminal window before it will accept any characters you
type.
The controller then creates a few default procedures for you; you will find out more about these
later:

Loadi ng procedure startup... Procedure Defined

Loadi ng procedure init... Procedure Defined

-->

The flashing cursor, _, will be positioned just after the - - > arrow. This arrow is called the
prompt and means Venom s waiting for your instructions.

At this stage you may want to make the IDE window bigger, and the terminal window
larger within it, so you can see more lines of text, and longer linestoo.

Simple Commands

Try hitting the Enter key on the PC keyboard a few times. 'Y ou will notice that VVenom replies
with a new prompt onanew line. Thisis a quick way of checking that Venomis talking to you.

Now try typing the following (press Enter at the end of the line). Here, the bitsinbol d are
what you type, and the rest is Venom's response.

-->Print "hello"
hel | o- - >
Venom responds to the command by printing the string you gave it back to the terminal window.

Now try the command below. Don't forget to type the dot between the two words.

© 2018 Micro-Robotics Ltd

Getting Started

If you make a mistake in your typing, then you can use Backspace (<) to remove the characters
you have entered.

-->l ed. On
-->

To seethe effect of this command you will need to look at the small LED indicator on the
VM2 controller.

The LED wiill light up. If you repeat the command subgtituting the word Of f for On, the LED
will be turned off.

Objects

An object is a part of the Venom language that will control a device in response to a fixed set of
messages. In the example above, | ed was the object responsible for controlling the LED
device onthe controller. On was the message sent to the led object. Thedot (.) tells Venom
that a message follows. Objects will be covered in much greater detail later. For now it is
enough to know what it looks like when an object is being used.

Incidentally VVenom commands are not case sensitive, o you can use any combination of
UPPER and lower case letters when writing Venom code.

The Command Line
The text that you type in at the - - > prompt is called the command line.
Errors

If you made any mistakes in the examples above, Venom probably issued an error message. In
case you haven't seen an error message yet, typeinl ed. . On. You will see:
-->led..on

N

Syntax Error: Expected nessage nane
Conmand | i ne not execut ed.
-->

Venomissued a Syntax Error message, meaning it didn't understand the command. The
offending line is listed together with a pointer to where Venom thinks the error is (the »
character), and the reason Venom didn't like it.

Syntax errors, like the one above, will only show up when code is sert to the VM 2. Thereis
another type of error that can occur: runtime errors. These will be dealt with later.

Simple Procedures

The commands shown above were very simple. Commands may be grouped together into
procedures that perform more complicated functions. Try the following line, taking care to
include the dots and spaces.

-->To blip led.On Wait 1000 led. Of End

Pr ocedur e defi ned
-->

The keywords To and End tell Venom that the commands in-between should be treated as a

© 2018 Micro-Robotics Ltd

5

single command (or procedure) called bl i p. Incidentally, the \Wai t 1000 command tells
Venomto do nothing for 2000 milliseconds.

Try issuing blip as a command:
-->blip
-->

The LED should turn on for one second then turn off again. The new prompt will only appear
once the procedure has finished.

Blip could also be issued as a command from within a procedure. The following procedure
‘calls blip once, waits for a second and then calls blip again. Try entering it and then typing
‘double’.

-->To double blip Wait 1000 blip End

It is not necessary to enter procedures on a single line. The blip procedure could have been
entered as below, or in any form where the spaces are replaced by new line or tab characters -
I.e. any 'white space' is allowed as a separator.

-->To blip

02>l ed. On

03>Wai t 1000

04>] ed. O f

05>End

Procedure Defined
-->

Y ou will notice that the prompt is different during entry of the procedure. This tells you that
Venomwill not act on the commands you type immediately, and also lists the line numbers of the
procedure.

Program files

Simple procedures may be typed in at the command line as shown above. When you wart to
write a full programit is useful to be able to keep all your procedures together in one or more
files. This can be done using the text editor in the IDE. We have adopted the file extension .vnm
for Venom program files.

To create a Venomfile follow these steps:
1. Create anew Venomfile using the menu File kb New.
2. Giveit aname by savingit: File kSave As....

3. If youdon't give the file an extension, it will be saved as a Venomfile (.vnm), whichis
what we need.

4. Youmay want to create a new folder somewhere on your PC to save the fileinto. You
can do this fromwithinthe save As... dialogue.

5. Now type the code of one the procedures above into the Venom file. This is now your
Venom programfile.

6. If youwant your code to run as an application, define a procedure called mai n.

© 2018 Micro-Robotics Ltd

Getting Started

Example file

This is an example for the contents of your first programfile; you can copy and paste this text
into your own file.

Main is called at startup.
To main
Print "Hello world", CR
blip
End

;Blip the LED.
To blip

[ed. On

VWai t 1000

[ed. OF f
End

Syntax highlighting

Notice that the text in your file is colour coded: this is Venom syntax highlighting. 1t allows you
to see the structure of a Venom program more easily by highlighting different elements of the
language with different styles. It can also show you when you have misspelled aVenom
keyword, or when you are trying to use a Venom reserved word for one of your own variable
names.

Downloading afile

Once you are happy with your programfile, use Terminal ¥Download (shortcut F7) to send it to
the terminal. This is equivalent to typing in the procedure, but much faster. Note that when you
download afile like this you don't see each individual line of the procedure - just a short report.

- - >PROGRAM "Newl. vnm' O $00001B9F 7
-->

Y ou can now call any of your procedures just by typing their name at the command line as
before:

-->blip

-->
Or you can run your whole program by hitting =10 or clicking on the Run icon in Venomi DE.

Syntax errors during download
Any syntax errors in the code will be reported on the terminal window as the file downloads.

Each syntax error will indicate the filename and line number that the error occurred in - see the
line shown in bold below (it won't be bold in the terminal window):

© 2018 Micro-Robotics Ltd

- - >PROGRAM "Newl. vnm' O $00000F46 7
| ed. on wait 1000 | ed. . on

N

Syntax Error: Expected nessage nane (newl.vnmline 2)
1 Syntax Error(s): procedure not defi ned.
End of file "newl.vnni

1 error(s)
-->

Try introducing such an error into your program and downloading it... then try double clicking on
the line in the terminal window that lists the filename and line number (shown bold above)

Double clicking on any line in the terminal window that has a filename and a line number on it
takes you to that place in your program - S0 you can instantly see where your errors are comng
from- and then correct them

Help
There are severa sources of help available:
Help Filesin CHM format
The firstly there is the the Venom Tutorial: that's what you are looking at now.
There are also other Help Files:
* the Venom2 Help File, for help on the Venom?2 Language
¢ the Venoml DE Help File, for help on the Venomi DE development system.

All of these are available from within Venomi DE, in the menu Help #Venom?2 language help #

You canalso get help on a specific Venomkeyword by placing the cursor on aword inthe
editor, rignt-clicking " and choosing

Help on:

Interrogating Venom

Another source of help is in Venom language itself: Venom has a simple on-board Help
command that allows you to interrogate the runtime system. 1t may not always have the
informetion you are looking for, but it can be useful. Try this:

-->Help |l ed

It is the OnBoardLED. (Printing it may give nore infornation)

Help will tell you information about the word you type after it - typically what type of thing it is -
and how to get more information.

In Venom, printing something will often give you informeation abott it. For example, Syst emisa

© 2018 Micro-Robotics Ltd

Getting Started

predefined object that represents the Venom operating system:

-->Print system

Source files:

wor Ki ng. vnm

Synbol table: 76 bytes

11 d obal vari abl es

Heap: Total 1038336, Free 1035484 (Contig. 1035048), Used 2852.

SUMMARY

* You have seen how to talk to Venom, issue commands, build simple procedures and
edit them.

® You have seen how to use some of the basic features of the IDE to communicate with
the controller, write programs and download them.

What next?

Y ou should now go onto read the next chapter of VVenom language tutorial, Repeating and
Deciding.

Later, you might also like to learn more about the Venoml DE development tools by reading
about themin the VenomI DE Help File.

© 2018 Micro-Robotics Ltd

Part 1:Venom Language Tutorial
This part of the tutorial takes you through the features of the Venom programming language (as
distinct from the library of objects covered in Part 2).

Carry on

© 2018 Micro-Robotics Ltd

10

Part 1:Venom Language Tutorial

Repeating and Deciding

It is often desirable for a command to be carried out several times or for it to be carried out only
if certain conditions are met. This s called Flow Control, and the language keywords that do
this are described in the following pages.

Repeating Commands: Repeat, Forever

Oftenit is useful to simply repeat a command or a set of commands — there are three 'constructs
that do this: Repeat , For ever and Every.

Repest is used to execute a command a pre-determined number of times. For example the
following line prints the string 5 times:

-->Repeat 5 Print "And again", CR
And agai n

And agai n

And agai n

And agai n

And again

-->

The keyword CR at the end of the Pr i nt command tells Print to send a Carriage Return after
the string.

Similarly For ever repeats a command forever.

-->Forever Print "And again", CR
And agai n
And agai n
And agai n

...(andsoon) ...

Stopping your program

Whenever Venom is executing a command, it may be asked to stop by pressing CirI-C on your
PC keyboard. The next example shows the effect of stopping a command:

-->Forever Print "And again", CR

And again

And agai n

And agai n

(user presses Cirl-C)

© 2018 Micro-Robotics Ltd

Repeating and Deciding 11

Runtime error 2: Escape via CTRL-C
in the command |ine.
-->

Escape — though not really an error — is handled as a runtime error by Venom as this allows it to
use al of the error handling features in the language.

Shortcuts

Note: you can hit Esc, F9, or use the BRK icon from within VVenoml DE to achieve the same
action: Stopping your application code.

Timed Loops: Every

The Ever y construct is Similar to For ever except that the command is executed periodically,
with a period specified in milliseconds. The following example prints the string once every
second:

-->Every 1000 Print "And again", CR

And again

And agai n

And agai n
(user presses Cirl-C)

Runtine error 2. Escape via CIRL-C

in the command |i ne.
-->

Again, the command had to be interrupted with Cirl-C.

If the code inside the Ever y construct takes longer than the given period then Ever y will not
attermpt to make up any lost time: that particular loop will just take longer; the next will be the
normal length.

Loop Count: Index, Index0

In all looping constructs, the keyword | ndex expresses the 'loop count’. For exanmple, the
following prints the numbers 1 to 5.

-->Repeat 5 Print |Index, CR

O WNBEF

-->

Note that the | ndex Startsat 1 — there is another keyword called | ndex0 that sarts at 0.

© 2018 Micro-Robotics Ltd

12

Part 1:Venom Language Tutorial

Grouping Commands: []

In all the above examples, only one command is repeated. 1f more than one command is to be
repeated, they should be grouped into a 'block’ of commands with the square bracket symbols [
ad] .

Asfar as the loop constructs are concerned, a block is just treated as a single command, so the
following repeats the printing and 'toggles the LED 4 times:

-->Repeat 4 [Print "Toggling the LED' , CR | ed. Toggl €]
Toggling the LED

Toggling the LED

Toggling the LED

Toggling the LED

-->

If the square brackets were not included, the printing would have been done 4 times but the
LED would only have been toggled once.

Making Decisions: If; Else

Aswell as repeating commands, it is also useful to be able to execute commands only if certain
conditions are met. Thisis achieved usingthe | f construct.

The following example uses a variable called a, which we need to define using the Becomes-
equal-to symbol, : =. Variables are covered in greater detail later on. The < symbol means 'less
than'; these conditions are explained fully in the next chapter, but it is sufficient to say that the
conditionis met if ais less than 30. If thisis the case, thenthe LED is turned on.

a .= 20

If a < 30 | ed. On

Itisalso possbleto use | f with El se so that one command is done if the condition is met, and
another if it isnot. For example:

If a <30 led.On Else led. Of

Finally, there is an optional keyword Then, which may be used to visually separate the
condition fromthe statement inan | f construction.

If a < 30 Then led.On Else led. Of

Then is not often used, as Venom does not need it, and indenting your code will usually meke
the structure clear to other programmers.

© 2018 Micro-Robotics Ltd

Repeating and Deciding 13

Indentation

Y ou will notice thet all the above examples showed the whole of a looping or decision construct
ononre line.

Thisisn't how they are normally written. More usually an indented format is used. This helps
you and others see the structure of the program more easlly:

To dummy
For ever
[
Repeat 5
[
If a < 30
Print "Less"
El se
[
Print "More"
a:=a-1
]
]
]
End

Repeating Decisions: While & Do

The Wi | e construct repeats a command as long as a condition is met. Each time round the
Whi | e loop the condition is re-tested.

Whi | e not _done ;the condition
[
do_sonet hi ng ; the commands
do _nore X

]

The Do ... Wi | e construct issimilar to VWi | e. However here the test is done at the end of
the loop rather than at the start. This means that the commands inside the loop are always
executed at least once.

Do

[
do_sonet hi ng ; t he commands
do_nore X

]

Wi | e not _done the condition

The keywords | ndex and | ndex0 are available in these loops, as with all loops.

© 2018 Micro-Robotics Ltd

14

Part 1:Venom Language Tutorial

Multiple choice: Select Case

The Sel ect Case construct allows one of a number of different actions to be taken
depending on the value of an integer selection value. Inthis example we assume a variable
called ‘choice’ has been defined.

Sel ect Case choi ce

Case 1

[

]
Case 2

[

]
Case 10, 11

[

]
Case El se

[
]

The Sel ect construct looks at the integer selection value, and then executes only the code
associated with that particular Case. More than one case value may be associated with a bit of
code (aswithCase 10, 11 inthe example above), and a default option may be specified with
Case El se.

Print "Choice 1"

Print "The second choi ce"

Print "A |l arger nunber”

Print "Default action"

Waiting
Oftenit is useful to wait for certain events. The Awai t command may be used for this— it just
waits for a condition to be met before carrying on.

Await ny button. Asserted
Asthe Awai t construct is waiting for a condition to be met while not actually running any other
code it is usually only used to wait for external everts, or for signals from other tasksina
multitasking application.

Finally the Wai t command just waits for a given number of milliseconds. For example,

Wait 1000
just pauses execution for 1000 mS.

© 2018 Micro-Robotics Ltd

Repeating and Deciding 15

Breaking out of Loops: Break

Any loop may be exited prematurely using the Br eak command. This simply breaks out of the
loop as soon as it is executed, and the code immediately after the loop is then run.

For ever

[

Print | ndex
[f Index = 10
Br eak

]
Print "Broken out!",CR

If loops are nested, Br eak will only break out of one level. To break out of more deeply
nested loops see Try

SUMMARY

® A set of commands may be grouped into a single command block usingthe[and] symbols.
e | f and El se may be used to make decisions and conditionally execute commands.

® Sel ect Case ... chooses one of many actions depending on a number.

® Repeat may be used to repeat commands a predetermined number of times.

® For ever repeats commands forever.

® Every repeat commandsin atimed loop.

*\VWileadDo ... Wil e repeat commands as long as a condition s true.

® Br eak will break out of any loop.

® Awai t waits for a condition to become true before continuing.

* \\ai t may be used to pause for a number of milliseconds.

© 2018 Micro-Robotics Ltd

16

Part 1:Venom Language Tutorial

Variables and Expressions

A variable is a named bit of memory that can hold values that may change during the running of

aprogram. The first time a new variable name is seen by Venom some memory is reserved to
hold the value.

The value of a variable may be set using: = (spoken as 'becomes equal to').
In the following example, a variable called count er is created and set to the value 1.

-->counter =1
-->

A variable's value may be changed at any time to any other value.

A variable's value may be examined usingthe Pr i nt command, for exanmple:

-->Print counter, CR
1
-->

Variable Names

It is good programming practice to use meaningful names for the variables in your prograns.
This makes it much easier for you to write the programin the first place, and is a great help
anyone who tries to read your code later.

Consder the following two procedures, which both do exactly the same job. One is clearly
easer to understand than the other.

To a (b, c)
#Define f 3.14159
Local d
Local e
Local g :

To cylinder_surface_area (dianeter , height)
#Define Pi 3.14159
Local circul ar_end
Local curved_surface

Local radius := dianmeter / 2

circular_end := pi * (radius”2)

curved_surface := dianmeter * pi * height

Return circular_end * 2 + curved_surface
End

Note that both of these procedures compile down to exactly the same runtime code.

© 2018 Micro-Robotics Ltd

Variables and Expressions 17

Variable names may contain up to 64 letters, digits and underscore _ characters. The name
may not start with a digit.

Variable names may not be the same as any Venom keyword or object type. Some examples
of both valid and invalid names are listed below:

Valid names Invalid names
wat er _t enperature wor d (WORD is a keyword)
out put _control _2 _
a var % (% is not allowed)
| ow byte (spacesare not alowed)

Style tider

Venom s not case-sendgitive; you can write your code in any case you like. However we
recommend our standard capitalisation style, which we have tried to use throughout this tutorial.
Venoml DE can convert your files to our standard capitalisation using the Style Tidier: Edit »
Style Tidier.

Listing Names

Y ou can list the names of all the variables that Venomhas seenby usingLi st \Wor d.

-->Li st WORD

Procedures:

startup init main nmonitor _in illustrate | ocals search
| nt egers:

Fl oat s:
Strings:
Poi nt er s:

ohjects (inc. "Nil"):
systemserial net |ed clock
Undef i ned:

sense_in counter o ilst any_val ue

Note that some of the objects displayed will have been autormetically created by the startup
procedure (discussed later) regardless of whether they are required by the user's program. In
general, the items are listed in the order they were first seen. The Undefined names are words
that have been used in some way, but have not been assigned a value yet. After an application

© 2018 Micro-Robotics Ltd

18

Part 1:Venom Language Tutorial

has been downloaded, but before it has been run, many of the names will be in this section.

Integers and Floating-Point Numbers

The numbers we have used so far have been whole numbers (or ‘integers). These numbers are
adequate for many purposes, but they do have restrictions - integer values must be in the range -
2,147,483,648 10 2,147,483,647 and must be a whole number (not a fraction).

Venom can also use floating-point numbers (or ‘floats). For example our count er variable
may be set to a floating-point value:
-->counter := 1.0

Floating-point numbers in Venom are calculated and stored to the IEEE single precision
standard: a number range of around +1.0E+38, and a precision of around 7 digits.

Constants

Constants are values that stay the same throughout the runtime of a program. Constants have
been used extensively in the examples so far: thingslike 1, 100, 2. 134 and so on.

Numeric constants

Integer constants are numbers like these:

1
23
43435

They may have any value within the 32- bit integer range: -2,147,483,648 to 2,147,483,647.

Floating-point constants must start with a digit, but must also include either one decimal point
and/or one e or E to indicate a exponent. These are all floating-point values in Venont
1.234
le2

2E4
2. 34e12

Logical or Boolean constants

Invenomthe values Tr ue and Fal se are keywords that may be used to represent the logical
values of true and false.

Tr ue isan dlias for the numeric value 1 and Fal se is an dlias for the numeric value O.

-->Print True, False, CR
1 0
-->

© 2018 Micro-Robotics Ltd

Variables and Expressions 19

String constants

There are also string constants — these are bits of text that remain the same during the life of a
program, for exanmple:

"This is a string constant"”
String constants always appear within double quotation marks.

(Actually, there is another way to define string constants, usually used when you need to define a
large block of text - see Embedded text in the Venom2 Help File).

Named Constants

Just asit is very useful to give the variables in your program meaningful names, it is also useful to
give many of the constants in your program names too.

There are several reasons for this: firstly, it helps with understanding the intention behind your
code when you use a name:

Wai t 60000
Wai t ONE_M NUTE

Secondly, if the same constant appears throughout a program, and the value needs to be
changed, it need only be changed in one place.
Named constants may be created with #Def i ne:

#Def i ne ONE_M NUTE 60000
#define two_m nutes (ONE_M NUTE * 2)

Actually, #Def i ne may be used to give any piece of programtext aname. A named piece of
text is called a'macro’.

#Def i ne LEDON | ed. on

Macros are dealt with in greater depth here.

Expressions

An expression is a bit of program code that calculates a result from one or more values using
operators.

Examples of values are: 32, 1. 23, count er .

Examples of operatorsare: < > + - * / andsoon.

© 2018 Micro-Robotics Ltd

20

Part 1:Venom Language Tutorial

Arithmetic Operators

The standard arithmetic operations Add, Subtract, and Multiply are available. InVenomthese
are+,- and*.

There are two forms of division in Venom integer (Di v) and floating point (/).

All symbols such as these are referred to as'operators since they operate on values. The
following are examples:

-->Print 3 * 2, CR

6

-->Print 3 + 2, CR
5

-->Print 3 +2* 4, CR
11

-->

Note that the final command is calculating 2 times 4, giving 8, and then 8 plus 3. Thisisdueto

the 'precedence’ of the operators, which determines in what order the operations should take

place. Precedence will be discussed in detail in the next section.
If either of the numbers being added, subtracted or muitiplied is a float, then the result will also
be afloat. For example:

-->Print 3.2 + 2, CR

5. 2000000
-->Print 6.7 * 5.8, CR

38. 860000
-->

Thisis called promotion, and happens automatically.

Divison is dightly different — even if both numbers are integers, the result will always be a float.

-->Print 5/ 2, CR
2.5000000
-->
If aninteger result is required, the Di v operator may be used — this always gives an integer, and
also requires integer values to work with.
-->Print 5 Dv 2, CR
2
-

The operator Mbd calculates the remainder after the division of two integers.
-->Print 57 Mod 9, CR

3
-->

The 'Unary minus operator negates the value it is placed before. For example:

© 2018 Micro-Robotics Ltd

Variables and Expressions 21

-->a. =b

-->Print - a, CR
-5

-->

The operator, Abs, gives the absolute value of the following number. The absolute value is the
magnitude or size of the value, and is always positive:

-->Print Abs -23, Abs 23, CR
23 23
>

Trig, Log and other functions

A useful set of trigonometric and exponential operators is also available:

Sin Cos Tan
Asi n Acos Atan
Log Exp Sgrt

The trig functions operate in radians.

-->Print Sin 1.0
0.841471-->

Exp gives 'eto the power of anumber. Log gives the natural logarithm of a number (that is
Loge). Sqrt givesthe square root of a number.

Power operator

There is also a power operator, which raises the first operand to the power of the second: »

Print 273
--> 8

This operator will give an integer result if both operands are integers. Note thet it's precedence is
thesameas*,/ andDi v.

Precedence

It was shown earlier that 3+2* 4 is calculated as 11. This is because the mutiplication is
calculated first. The order in which operators are calculated is determined by their ‘precedence’
— the higher the precedence, the earlier they are calculated. \When operators have the same
precedence they are calculated in left to right order.

A full table of precedence for the operators discussed in this chapter (including those yet to be
discussed) is given below. The operators with highest precedence are listed at the top —
operators on the same line have equal precedence.

© 2018 Micro-Robotics Ltd

22

Part 1:Venom Language Tutorial

()
e As Int As Float |sFalse

- Abs Inv ! Sin Cos Tan Asin Acos Atan Sgrt Exp
Log ? TypeO

* [/ Div Mod 7

S

> < >= <= = <>

And O Eor AndAl so O El se

To change the order of calculation, parentheses (round brackets like these) may be used. For
example:
-->Print (3 + 2) * 4, CR

20
-->

This gives 20, since 3+2 is calculated first, giving 5, which is then multiplied by 4.

Adding redundant parentheses will produce exactly the same runtime code, but can sometimes
add clarity to your source code.

Type Conversion Operators

Oftenit is useful to convert floats into integers or vice-versa. This can be done with the
operatorsAs | nt and As Fl oat . Thelr operation is simple — they convert the preceding
number into an equivalent number of the type specified. For example:

-->Print 3 As Int, CR 3.9347 As Int, CR
3
3
-->Print 3 As Float, CR 3.9347 As Float, CR
3. 0000000
3.9347000
-->
Notethat As | nt simply discards the fractional part of a number. There is no 'rounding up' to
the nearest integer, and negative numbers round towards zero.

Relational Operators

It is often useful to make a comparison between numbers: 'Are these numbers equal?, 'Is this
number bigger than that number?, and so on. This is done with relational operators.

Before discussing the operators themselves, it is important to appreciate the significance of their

© 2018 Micro-Robotics Ltd

Variables and Expressions 23

results. All relational operators return either 1 or O; 1 indicates that the relationship was true,
and O indicates thet it was false.

The main relational operators are =, < and >. Of these, = tests whether two numbers are equal,
< tests whether the first is less than the second number, and > tests whether the first is greater
than the second number.

The following example illustrates their use (remember that the relationship istrue if 1 is returned).
Note that several numbers may be printed at once if separated by commes.
-->Print 3=3, 2=1, 1 <2, 2<1, 2>1,1>2, CR

1 0 1 0 1 0
>

The remaining three relational operators (<>, <= and >=) are variations on the first three; <>
tests whether two numbers are not equal, <= tests whether the first number islessthan or
equal to the second, and >= tests whether the first number is greater than or equal to the
second. While the origins of >= and <= are obvious, <> is a dightly odd symbol for 'not equal’
or 'different’.

There are some points worth noting about testing for equality (using = and <>).

Firstly, two numbers of different types (for exanmple, integer and float) will never be regarded as
equal. Thisisillustrated in the next example:
-->Print 3.0 =3, 3.0<>3, 2.0=3, 2.0 <> 3, CR

0 1 0 1
>

Secondly, it is not usually a good idea to rely on a test for equality between two floats — even
though they 'should' be equal, tiny errors that creep in due to the finite precision of the calculation
may cause them not to be precisely equal.

Boolean Operators

In the same way thet it is possible to perform calculations with numbers, there are also
calculations that can be performed with true/false values (collectively termed '‘Boolean’, or
logical, values). The operators that do thisare AndAl so, O El se and | sFal se.

These operators make it possible to describe complex conditions:

If (val > threshold AndAl so error _flag |IsFalse) OElse override
do_sonet hi ng

These returned values may be used by themselves, but are more often used as the condition part
ofan! f, Wil e. Awai t or other Smilar statemer.

The 'truth tables of the Boolean operators are shown below:

© 2018 Micro-Robotics Ltd

24

Part 1:Venom Language Tutorial

Fal se
Fal se
True
True

Fal se
Fal se
True
True

Fal se
True

AndAl so Fal se => Fal se
AndAl so True => Fal se
AndAl so Fal se => Fal se
AndAl so True => True

O El se Fal se => Fal se
O El se True => True
O El se Fal se => True
O Else True => True

| sFal se => True
| sFal se => Fal se

InVenom, Tr ue and Fal se are keywords which represent the values 1 and 0 respectively.

Note that the Boolean operators, as well as all Venom constructs that take a condition (e.g. | f,
Whi | e, Awai t), will treat O as meaning Fal se, but any non-zero number to mean Tr ue.

Lazy evaluation

Another property of the AndAl so and Or El se operators is that they don't actually evaluate
the second (right hand) expression if the left hand expression determines the result. For

example, if the first value givento AndAl so isfalse, thereis no need to look at the second value
- the result hasto be false. Thisis called 'lazy’ or "short circuited' evaluation and can be useful for
writing more efficient and clearer code.

Notethat | sFal se isa'postfix' operator - thet isit comes after the expression it operates on.

Another look at Index

It was shown before that | ndex and | ndex0 could be used in aloop to represent the number
of times that the loop had repeated. However, only one value of | ndex is available at any time
—if one loop isinside another, the | ndex value for the outer loop is not available. To solve this
problem, the value of | ndex can be placed in a normal variable in the outside loop. Thisis

shown in the example below, which prints a multiplication table.

Repeat 3
[
[i ne_nunber := |ndex
Repeat 3
Print Index * |ine_nunber
Print CR
]
with the resuit being:
1 2 3
2 4 6
3 6 9

© 2018 Micro-Robotics Ltd

Variables and Expressions 25

Changing the type of a variable

Venom allows you to change the type of a variable at will. For example you can define the
variable counter to be aninteger first, and then afloat later:

-->count er 1
-->counter 2.0123

It is also possible to change an object into a number, and vice-versa. Though this is sometimes
useful it can be the source of some confusion when it is first encountered. For example if an
analogue output channel is called 'level’, then a short lapse of memory may cause you to type the
second line, intending the output level to become 128.

-->Make | evel Anal ogue ($30)

-->l evel := 128
Instead the object is replaced by aninteger. If you later try to send a message to it, then an
error will be issued.

Help

The Hel p keyword can tell you wheat the type of a variable is:

-->Hel p | evel

It is an |nteger

-->Make vol t age Anal ogue ($31)

-->Hel p vol tage

It is an Anal ogue object. Try PRINTing it for nore info.
-->

TypeOf Operator
Y ou can find the type of a variable within your program code using the TypeOf operator. This
will return an integer that represents the current type of a variable.

-->Print TypeOF 12
0

Or more usefully, inside a program you might use this to check if x is a floating point number:

If TypeO x = TypeOF 1.0
[

]

Sets of Data

There are three pre-defined object typesin Venom that provide storage for sets of data: Ar r ay,
Buf fer andFi | e.

Y ou can also create your own entirely new object types to hold sets of related data. This is dealt
with later in Creating new classes.

© 2018 Micro-Robotics Ltd

26

Part 1:Venom Language Tutorial

Arrays are for holding fixed amounts of data, whereas Buffers can hold variable amounts of data.
Arrays and Buffers also have other properties that are given in the table. Files are similar to
buffers, but can potertially hold much more data, and will retain their contents when the
controller is not powered. Access to files may be slower than buffers.

Array Buffer File
Dynamic size No Yes Yes
Contents initialised Yes No No
Data can be modified Yes Yes Yes
Mixed data types No Yest No
Text handling Limited Yes No

Buffers, Arraysand Files can hold many kinds of data. All the data within a single object must
be of the same type*. The data types that may be stored are:

¢ 8, 16 or 32-bit Integers

* Foating point numbers

® Arrays of string constants

¢ Buffers and files containing text

® Arrays of Pointers

*Note that there isalso a special kind of Buffer which can hold mixed data of any type,
including other objects.

Array and Buffer will be fully described in the Objects section, but for now here are some
examples of using them:

Constant Arrays

In your program file insert text like thisand download it:
ARRAY sonme_data (Int , 10)

End
On the command line type this.

© 2018 Micro-Robotics Ltd

Variables and Expressions 27

-->Print sone_data. El enent (2)
3-->
The Ar r ay we created was called sone_dat a, and we indicated it should hold 32-bit-integer
data, and that it would hold 10 of these integers. We then specified what the first four of them
were, before End indicated the end of the definition of the Ar r ay.

We then read out one of these numbers using the EI enent messageonthe Ar r ay.

Note that Venom has a shortcut for . El enent (n) , whichis. (n). Weusethisinthe
example below.

-->Print sone_data. (2)
3-->

Variable Arrays

The example above created a constant array - the numbers held by it would not change while
the program was running.

Y ou can create variable arrays where you can change the values held in the array, for example:
-->Make var_array Array(Int, 10, 1, 2, 3)

-->var_array.(0) := 12
This makes an array of 10 32-bit numbers, and initialisesthemto 1, 2, 3, 3 ... , then we change
the very first element to be 12.
Or you can use this:

-->var_array := sonme_data. Copy
This makes a variable array with contents initialised to those of the constant array we saw
before.
Buffer

Buffers are different to arrays. Here we make a Buffer that takes 32-bit integers, put a couple of
numbers into it, then print one of them:

-->Make buff Buffer(Int)
-->puff. Put (1)
-->buff. Put (2)
-->Print buff. (1)
2-->
Files

Files are described fully in the Venom2 Help File.

SUMMARY
* Numbers may be stored in variables using the : = symbol.

* There are two types of number — integers (whole numbers) and floats, which are capable of
holding 'real' numbers, i.e. those with a decimal point.

© 2018 Micro-Robotics Ltd

28

Part 1:Venom Language Tutorial

® The operators +, - and * are used to add, subtract and muitiply numbers.
* Divisionusing/ aways gives a floating point result and Di v always gives an integer.

® The operators =, <, >, <=, >= and <> may be used to make comparisons between numbers
giving a Boolean resuit (1 for true, or O for false).

* TheoperatorsAs | nt and As FI oat convert the preceding number into an integer or a
float respectively.

® The operators AndAl so, O El se and | sFal se may be used to manipulate logical (or
Boolean) values.

* The order inwhich all of the above operators are calculated is determined by their precedence
— high precedence operators are calculated before low ones.

® You can store sets of constant or variable data in Arrays, Buffers and Files.

© 2018 Micro-Robotics Ltd

Printing 29

Printing

The Print command has been introduced already for printing numbers. It actually has much more
flexibility.

A Print command consists of the Print keyword followed by a'print list', which is a list of itens

separated by commeas. Each print item may be an expression, some text, or one of several
Specia printing keywords.

(Note: there is also a method of printing very similar to C's printf() function: the PrintF message.)

Strings
It is often useful to include some text (a 'string’ of letters) in the print list. Y ou do this by
enclosing it in double quotes. For example:

-->Print "The counter is ", counter, CR

The counter is 1
-->

Print Keywords
There are severa special print keywords that may be included in a print list.
CR, carriage return, starts anew line.
BEEP will meke the terminal beep. Thisis useful for attracting attention during debugging, when
aterminal is attached, for example:
Print BEEP, "An error has occurred”, CR

Print CHR is used for printing particular characters on the terminal screen. It is followed by a
value: the ASCII code of the character to be printed. The following example displays the whole
alphabet by printing characters 65 to 90. A full list of ASCII character codes is available.

Example

-->Repeat 26 Print CHR 65+l ndex0O Print CR
ABCDEFCGHI J KLMNOPQRSTUVWKYZ
-->

Printing Integers

The colon operator (;) may be used to alter the way in which integers are printed. It is placed
after the expression to be printed and is then followed by an integer value. This combination of
colon and value is termed a ‘formet specifier’. Inthis case it specifies how many characters
should be used to print the expression — the "field width'. The following example prints the resuits
from a couple of variables (assumed to be integers, and defined elsewhere) called timeValue

© 2018 Micro-Robotics Ltd

30

Part 1:Venom Language Tutorial

and random.

-->Repeat 4 Print |Index:2, tinmeValue, random 10, CR
1 14082 14627625
2 63173 2363283
3 50987 47844170
4 38904 37278678
-->
Note that timeValue is being printed in the default field width of 6 characters. If a number istoo
large to print inits allocated width, it will use as many characters as it needs.

If a negative field width is specified, then the number will be printed with zeros before it so that it
always fills its width.
-->Print 10 : -4 , CR

0010
-->

Printing Floats

There may be up to three colon (:) format specifiers following a floating- point expression. The
first specifies the total field width and operates as for integers.

If only one colonis used, a general floating point print formeat finds a sensible way of displaying
the value.

-->print 1.2, 0.000000012, " ",1200000000.0,cr
1.2 1.2e-08 1200000047.7
-->

The 7-digit precision in floats is showing in the third number.

If there are two colon format specifiers, the number of digits after the decimal point may be
specified. The first colon specifies the total field width, and the second specifies the number of
decimal places. Again, a number that does not fit will simply use as many characters as are
needed.

-->Print 12.718281:15:5, CR, 12.718281:8:4, CR, 12.718281: 3: 3,
CR
12.71828
12. 7183
12.718
-->

If there are three colon formet specifiers, the number is printed in 'scientific' format — which is the
formeat that is used normally when a number is either too large or too small to be printed as usual.
The first number specifies the total field width as always; the second specifies the number of

decimal places; and the third specifies that the 'E' format be used. The third value is not currently

© 2018 Micro-Robotics Ltd

Printing 31

used. If the number is too wide, it will use as many characters as required.

-->Print 12.718281:15:5:0, CR 12.718281:8:4:0, CR
12.718281: 3:3: 4, CR
1.27183E+01
1.2718E+01
1. 272E+01
>

Printing a Fragment of a String

Y ou can use the : operator to specify how a string is to be printed. :nwill print the leftmost n
characters fromastring. 1f the number is negative, you get the rightmost n characters:

-->Repeat 10 Print "[","abcdefghij":lndex0-5,"]"
[fohijI[ghijIlhijI[ijl[i]1[]1[a]l[ab][abc][abcd]-->

Using two colon operators allows you to print any portion of a string you wish to, and,
additionally, will pad out the printed portion with space characters to a required width. This
allows you both to select portions of the string and to implement scrolling text.

The first colon specifies where to start printing within the string, and the second specifies how
many charactersto print. If the start position is negative, or more characters are requested than
are inthe string, then space characters are printed.

-->Repeat 10 Print "[" , "abcdefghij" :lndex0-5:10 , "]" , CR
[abcde]
[abcdef]
[abcdef g]
[abcdef gh]
[abcdef ghi]
[abcdef ghi j]
[bcdef ghij]
[cdefghij]
[def ghi j]
[efghi]]
-->

SUMMARY

® There are a number of special keywords for printing, such as CR, CHR.

* Numbers may be formatted using the colon (:) operator. Inits simplest formthis sets the
field width of the printed number.

 Strings may be partially printed to achieve special effects.

© 2018 Micro-Robotics Ltd

32

Part 1:Venom Language Tutorial

Procedures

Procedures were first introduced in the Getting Started section. This chapter explains more fully
what procedures can do and how to create them.

A procedure is a set of commands that are grouped together and given a name. Some
procedures will be created to perform low-level (i.e. detailed) aspects of an application, like
turning outputs on and off and recording values. Other procedures will cover high-level aspects
of the application, calling on lower level procedures to perform the detailed operation.

If meaningful names are given to procedures, then the higher-level procedures tend to read like
an English description of the steps involved in solving a problem. For example, the top-level
procedure of a Venom application, which controls a furnace's temperature cycle and logs the
actual temperature, might look like the following. Don't worry about understanding the detail of
the exanple.

To control the furnace
initialise the variables
Start tenperature_| og
control the_tenperature

End

The lower-level procedures might look like this:

© 2018 Micro-Robotics Ltd

Procedures 33

To initialise_the_variabl es
Make | ogged val ues Buffer
rate_up := 1.435E-5
rate_down := 1.435E-5
m nutes_hold := 120

End

To tenperature_l og
Every 60 * 1000

[

| ogged val ues . Put (tenperature)

]
End

To control the_ tenperature
Aut oDest ruct
Local tinerl := New Stopwatch
Local tiner2 := New Tinmer (1000 * 60 * m nutes_hol d)

timerl . Reset
While tenperature < final _tenp_ 1

[

demand_tenperature (tinerl . Time * rate_up)

]
timer2 . Go

Await tiner2 . Done
timer2.Period := 1000 * 60 * 10
Wil e tenperature > final _tenp_2

[

demand_tenperature (tiner2 . Tinme * rate_down)

]
End

These lower-level procedures call on other procedures lower than themselves, temperature and
demand_temperature which, for compactness, are not listed here.

This division of processing into higher- and lower-level proceduresis a large part of what
structured programming is about. Structured programs tend to be quicker to develop, easier
to understand and faster to debug.

Defining Simple Procedures

The To keyword starts the definition of a procedure and is always followed by the name of the
procedure. The body of the procedure then follows as a number of commands. Finally, the
procedure definition is finished with the End keyword.

The following procedure monitors a proximity sensor, sense_i n, and when an object is

© 2018 Micro-Robotics Ltd

34

Part 1:Venom Language Tutorial

detected (the sensor goes from False to True), it adds one to the variable counter.

To nmonitor_in

For ever

[
Await sense_in.Asserted = Fal se
Await sense_in.Asserted = True

counter := counter + 1

]
End

The best way to create your own procedures is to write them into your venom code file, then
download the file using F7, etc.

We dedlt with this earlier.

Procedure Names

Procedure names take exactly the same form as variable names. See Variables and Expressions

Calling Procedures

A procedure is executed, or ‘called’, by using its name as if it were a command, for example by
putting its name in another procedure:

To reset _then_nonitor
counter := 0
nonitor _in

End

Another example is given below.

To | og_tenperatures
For ever

[

| og_val ue. Put (neasur e_t enper at ur e)

]
End

Here we assume neasur e_t enper at ur e isaprocedure that reads an analogue input and
returns a calibrated temperature value; returning values from procedures is explained below.
Log_val ue isaBuffer that accumulates data entries. See the second part of this manual for
more information on Buiffers.

Beware of using procedure calls in the place of the 'GOTO' commands of some early languages.

If you try the following example, the code will stop within a few seconds. This is because each
time a procedure is called, a small amount of 'stack’ memory is taken. This memory is returned
to the system when the procedure ends. If a procedure repeatedly calls itself, then small

© 2018 Micro-Robotics Ltd

Procedures 35

amounts of memory are continually taken but not returned.

To flash | ed
| ed. Toggl e
Wait 100
flash_led ; Incorrect usage!
End
When a procedure calls itself, it is termed 'recursion’. This is sometimes useful; it will be dealt
with later.

Comments

Comments may be inserted into your Venom code anywhere using the semi-colon (;)
character. All text following the semi-colon, and before the next carriage-return, is treated as
comment and ignored by the Venom compiler.

Comments in code are used to explain to someone else (and even to yourself) what the code is
doing and why. Thisis necessary at both high and low levels, i.e. for detailed descriptions of
what is going on, and also for the broad outlines of the application.

; This procedure reads the therm stor input,
;converts it to degrees C and returns it.
To read_tenperature

read_an ; Read the anal ogue to digital converter

End

Commenting code well is regarded as a very important part of good software engineering
practice. Comments are essertial for maintaining code, that is, when correcting errors (bugs) in
the code, or when adding new functions.

It is widely recognised that after just a few months most people can't remember how their code
works, or why they wrote it the way they did.

For particularly hard-to-solve problems it's a good idea to write down the thought processes
behind a particular bit of code. Comments are the way to do this.

Procedures are not forgotten

If you are using a cortroller with a Battery-backed RAM then it won't lose any of the
procedures that you have downloaded or typed in, even whenit is turned off. Try enteringa
procedure and then turning the controller off. When you turn it on again, make sure that you
answer 'N' to the Clear Memory question. Y our procedure will still be in the controller if you
typelist All.

Note, however, that the values of al variables are lost over a power cycle. Your program
should initialise these each time it runs.

© 2018 Micro-Robotics Ltd

36

Part 1:Venom Language Tutorial

No battery

If you are using a controller with no battery-backed RAM, then it will need the procedures
loading again if the power goes off.

Protected Application Area

Y our procedures should only be stored in RAM during software development. When your
software development is complete you should 'Protect’ your code in the controller's Protected
Application Area (in Flash memory), where it is safer from accidental loss.

Backup your source code

Y ou should also make sure that you have your source code (the code in your Venom program
files) put somewhere safe - where it is safe from loss and where you can find it when you need it.
You can't get it back out of the VM 2!

Passing Information to Procedures: Parameters

To enable a procedure to accept information, certain variables — called parameters — can be set
up to receive the information when the procedure is called. The parameter names are given after
the procedure name. They must be enclosed in parentheses () and separated by commeas or
gpaces. The values of the parameters will be set to the values given to the procedure when it is
called. For example, the following procedure prints the resuits of Div and Mod on the two
numbers given. The parameters are named a and b.

To di v_and_nod(a, b)

Print a Div b, a Md b, CR
End

This procedure is called as before except that the values of the parameters must be given (again
separated by commas or spaces and enclosed in brackets):
-->di v_and_nod(10, 3)

3 1
-->

When called as above, the parameters a and b in the procedure will be set to 10 and 3
respectively.

Formally, parametersin Venom are passed by value, rather than passed by reference. If you
wart to pass by reference, you can use pointers. See Pointer Expressions.

© 2018 Micro-Robotics Ltd

Procedures 37

Procedures that Return Information

Procedures that return information (sometimes called functions) use the Return command.
Return is always followed by an expression. When Return is encountered, the expression is
calculated and the resulting value is immediately passed back to the code that called the
procedure.

For example the following procedure returns a calibrated temperature:

To neasure_tenperature
Return (thernoneter.Value - 12) / 3
End
Note that the expression will produce afloat, and so afloat is returned. The procedure's
returned value may be displayed (and formatted) using the Print command:

-->Print neasure_tenperature:8:2, CR
22.67
-->
Often procedures will both accept and return informetion. The following procedure takes two
numbers as parameters and returns the larger of the two:

To greater(Xx,Yy)
If x >y
Return x
El se
Return y
End

Itis called in exactly the same way as other procedures with parameters:
-->Print greater(1,2), greater(319, 122), greater(117,980), CR

2 319 980
-->

Exiting Procedures

A procedure is normally exited when the last statement has been executed. Control then returns
to whatever called the procedure. However a procedure may be left before End by using
Return. Return will exit a procedure immediately, as well as performiits other function of
returning avalue. 1f you don't need a value to be returned, just use Return O.

© 2018 Micro-Robotics Ltd

38

Part 1:Venom Language Tutorial

To proc
[f x = 12
Return O
End

Local Variables

So far, apart from parameters, all the variables we have been dealing with have been 'global’ —
that is they are 'visible' from any procedure or the command line. Often it is desirable to have a
set of variables that are only visible from one procedure. These are called local variables.

Local variables are set up using the Local command. The following procedure is a functionally
identical verson of neasur e _t enper at ur e shown before, but it uses alocal variable called
i nt_t enp (short for 'integer temperature'):

To neasure_tenperature
Local int _tenp
int_tenp := thernoneter. Val ue
Return (int _tenp - 12) / 3
End
N othing except the procedure measure_temperature may use or even 'see' the local variable
int_temp. If there isa global variable with the same name, it will be ignored inside the
measure_temperature procedure. This feature is called overriding. Local names
automatically override global names.

Local variables are very important to good programming. They allow programmersto be
confident about which bits of code are accessing which data.

The Lifetime of Local Variables

Local variables are created anew every time a procedure is called, and are lost forever when the
procedure finishes. They may be initialised to any value, either when they are created, or later.

The following procedure illustrates a variety of ways to declare and initialise local variables:

To illustrate_ | ocal s
Local a
Local b

Local c,d,e,f
Local g := 12, h := 13 * g + any_val ue

a =11
b := 10
End

If you don't initialise a local variable when it is first defined, it is given the default value of integer
zexo.

© 2018 Micro-Robotics Ltd

Procedures 39

Local variables must always be defined at the start of a procedure, before any other lines of
code.

Recursion

Procedures may be called recursively. That is, a procedure may call itself, directly or indirectly.
This technique is not often used in control applications, but is included here for completeness.

Recursion sometimes gives an elegant solution to some problems but you will probably never
need to use it in Venom

Trivial recursion

A rather trivial example of recursion is:

To recursive_procedure
recursive_procedure
End

Local variables are on the stack

Whenever a procedure is called, it allocates some stack memory in which to store its return
address and the values of its local variables (among other things). When a procedure is called
recursively (or if it is called by several different tasks), each procedure call is termed an 'instance’
of that procedure.

Even if there are many instances of a procedure, they will each have their own set of values for
the local variables. If they don't affect any global variables or any external device then each
instance of the procedure is entirely independent.

Example of using recursion

For exanmple, the procedure below will find a given value in any Buffer object that contains a set
of unique values in ascending order. It does this by considering the whole Buffer and then
determining whether the value is in the upper or lower half. It then calls itself, this time giving half
the range. It continues until a value is found, in which case al the procedures finish one after the
other.

Note that when there are only two or less values to be searched, the procedure no longer needs
to call itself. Recursive procedures must always have away ot like this, otherwise they will
continue calling themselves until the stack is used up.

© 2018 Micro-Robotics Ltd

40

Part 1:Venom Language Tutorial

To search(buf,val,lo,hi)
m ddl e, resul t
"Searching from", lo

Local

Print

m ddl

e

If (hi

[

I f buf.El ement (Il 0)
Return | o
[f buf.El emrent (hi)

Ret urn hi
Return O

]

= (lo + hi) Dv 2
lo) < 2

val

val

| f buf.Element(m ddle) < val

to

to

", hi,

", hi,

result := search(buf,val,mddle,hi)
El se

result := search(buf,val,l o, mddle)
Print "Returning from", lo

Return result

End

"with ", result, CR

Here we call the search procedure on a buffer we've called sorted_buffer: Two Print
commands show the recursive procedure calls working:

-->search(sorted buffer, 1225, 0, 36)

Sear chi
Sear chi
Sear chi
Sear chi
Sear chi
Sear chi
Ret ur ni
Ret ur ni
Ret ur ni
Ret ur ni

Ret ur ni
-->

Listing Procedures

ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng

from
from
from
from
from
from
from
from
from
from
from

0
18
27
31
33
33
33
31
27
18

0

to
to
to
to
to
to
to
to
to
to
to

36
36
36
36
36
34
36
36
36
36
36

W th
W th
Wi th
with
with

34
34
34
34
34

Y ou cannot list the full source of a procedure back as the compiler has trandated it into a
completely different form. If you attempt to list a procedure it will give you a short summary of
the compiled code:

© 2018 Micro-Robotics Ltd

Procedures 41

-->list search
; To search(buf,val,!lo,hi)
Local m ddl e, result
; No source |ist [248 bytes @64000al18]
: End
-->
The exception to this is the startup procedure. This lists back its defaut text only — to allow you
to see how it operates or to copy it So you can change it.

The master copy of your code should be in the files you create and download.

Deleting Procedures

Normally you won't have to delete any procedures - VenomlDE is set up to do thisfor you
automatically - though you can change this setting it isnormally best left asit is.

Delete
Rarely you might need to use the Delete command to delete an individual procedure. For
example:

-->Delete nmonitor_in

-->

Predefined Procedures

Venom predefines three procedures when its memory is cleared. The three procedures are
caled st artup andi ni t. They make it easy for you to start programming your application.
They are explained in detail later.

SUMMARY

® Procedures are defined with To and End.

® Procedures are retained while the power is off.

¢ |nformeation may be sent to a procedure in parameters.

* A result may be returned from the procedure with Ret ur n.
® A procedure exits immediately ona Ret ur n command.

® Procedures may set up local variableswith Local . These variables are private to each
procedure and cannot be accessed from elsewhere.

¢ Delete may be used to delete a procedure from memory.

© 2018 Micro-Robotics Ltd

42

Part 1:Venom Language Tutorial

Objects

So far this manual has used objects without really explaining what they are. By seeing them used
in context you will have picked up much of the basic information about them. This chapter will
give a fuller definition of objects.

Object orientation allows 'bits of code' (programs) to be treated a bit like off-the- shelf electronic
components.

In Venom, objects are used to represent actual devices in the real world, such as a heater
connected to a digital 1/0 pin, or athermometer connected to an analogue input pin. Objects do
the job of device driversin other languages.

In order to make things happen, like reading an analogue value or turning on a digital output, the
object is sent messages.
In previous chapters we saw messages sert to objects in the commands:

| ed. on
and

Print thernoneter. Val ue
What we did not cover was how to define these objects in the first place, or the range of
messages that you could send them.

Creating Objects
Make
Objects may be created with the Make command.

The example below shows a Digjtal object being created to control a heater using one of your
controller's digital channels.

Make heater Digital ($2F, 1)
The Make command is followed by a variable name, inthis case heat er , and then by the type
of object required, inthiscase Di gi t al . Two parameters are also supplied:
1. '$2F isthe VM2 channel number that the Digital object will control.

2. '1' means make it an output rather than aninput - some digital channels need to be told
thiswhen they are created.

Important Conceptual Note: heater is a variable that now refersto, the Digital object.
This concept will become important if you start to do more complex things with objects.

© 2018 Micro-Robotics Ltd

Objects 43

Other examples
This example shows the creation of an object to read the temperature sensor used in previous
examples:

Make t her nonet er Anal ogue($30)

Inthiscaset her nonet er refers to an Analogue object that reads channel $30.

It is advisable to use descriptive names for objects, even at the expense of more typing*, since
the meaning of short names is easlly forgotten (and may be a conmplete mystery to someone
else). For example, some other objects could be created as follows:

Make di splay Al phalLCD (20, 2, 0)

Make buzzer Digital (129)

Part 2 of this manual contains detailed informetion about the various types of object and how
they function.

*Note: VenomIDE2 has an autocompletion function that will complete a partially typed
variable name from a list of names you have used before.

When to create Objects

It is possible to create objects from the command line. This is fine when exploring the language,
or when trying out something new. However, when it comes to writing a real application, most
objects are normally created immediately after the controller is turned on, by conventionina
procedure called i ni t

There are severd reasons for this

* Objects are not retained over reset or power down, and so must be re-created before a
program may use them

* |tisgood if most of the object definitions are in the same place in the program listing, for
easy maintenance of the code

¢ All the memory that is going to be taken by objects will be taken early on, which mekes
programs easier to debug

® Objects should not be defined more than once, and this is easy to ensure if all the
definitions are in one place

There are sometimes circumstances where you will wart to create objects 'dynamically’. This
requires special care and is covered in Creating Temporary Objects.

© 2018 Micro-Robotics Ltd

44

Part 1:Venom Language Tutorial

The Startup Procedure

There is dways a procedure called startup inVenom. A default startup procedure is created by
Venom. Startup tells the controller what to do at power-on.

Thel ed object used in the examples in previous chapters is defined in the default startup
procedure, along with several other useful objects. 1f you need to see the code of the defaullt
st art up procedure, thenuse Li st :

-->List startup

The text of the DEFAULT startup procedure:
TO startup
MAKE system Operati ngSystem
system ErrorAction : = NEWDigital ($20). Asserted | sFal se
MAKE serial Serial Port (115200, 1, 1)
MAKE net | 2Cbus
MAKE | ed OnBoar dLED
MAKE cl ock Real Ti med ock
| F system Runnode
[1ed. Flash($80)

init
mai n
| ed. Fl ash(0)
]
END
-->

Notice st ar t up callstwo procedures, i ni t and mai n.

Y ou have to write init and main yourself. Y ou can re-define startup, but it's usually better to
leaveit asit is.

The init procedure is the best place to put al your Make commands, as then they will be reliably
executed at startup, when power is applied to the controller. The main procedure is the best
place to put your main application code.

The startup procedure has a chapter all to itself, later on in thistutorial.

Using Objects

It has been shown that objects may be sent messages by placing adot (.) after the object
name, and before the message name. For exanple, the following two commands send 'On’ and
'Off' to the Digital object named heater.

© 2018 Micro-Robotics Ltd

Objects 45

-->heater. On

-->heater. O f

-->

Similarly the command below can be used to read a thermometer connected to an analogue

input object.

- ->t her nonet er . Val ue

-->
However, nothing appears to happen because the 'result’ was not used. To examine the result,
the Print command could be used. For exanmple, to print the value of thermometer, type the
following:

-->Print thernoneter. Val ue, CR

46

-->
Thermometer.Value is simply an expression, the value of which may be assigned to variables, or
used in further expressions, for example:

a : = thernoneter. Val ue

b := thernoneter.Value * 10 / 2.546

Message Parameters
Some messages take parameters, just like procedures. An example of this is the Flash message
to the led object. Try the following line:

-->| ed. Fl ash($A0)
-->

The message FI ash($A0) setsthe LED on your controller flashing around twice per second.
(Many other flash patterns are possible - see here for more details)

Active Variables

Some messages are called 'active variables. They may be both set and read, just like a normal
variable. Anexample of thisis the message Asser t ed, understood by Di gi t al objects,
among others. If heat er isadigital object, then setting heat er . Assert ed to Tr ue or
Fal se will turn the heater on or off respectively:

-->heater. Asserted := True
-->

Reading heat er . Asser t ed will return True or False depending on whether the heater is
currently on or off:

-->Print heater. Asserted
1-->

(Remember Tr ue hasthe value 1)

© 2018 Micro-Robotics Ltd

46

Part 1:Venom Language Tutorial

What Objects are available?

InVenom, there is a set of built-in object types. The exact definition of each object type, and of
the messages it responds to, is given in the Venom2 Help File.

A less formal description of how to use a selection of these built-in objects is given in Part 2 of
this tutorial.

User-defined Classes

Venom also alows you to define your own types of objects - see Creating new classes.

The 12C Bus

One particular object will be keep getting a mention, so it's worth introducing it at this point.
Thisisthe | 2CBus object. The defauit startup procedure defines one for you called net . Thel

2C busis an industry-standard bus for communication at the 'chip level'. Literally it is the Inter-

Integrated-Circuit Bus. The 12C bus allows Venom controllers to connect to a variety of ICs
that provide useful functions additional to those on the main controller, including:

¢ Digta I1/0
* Andoguel/O
e LCDs

®* Touchscreens

e Keypads

Removing Objects

Any object created with Make may be removed, if it is no longer required, by sending it a Die
message:
Heater.D e

In general most applications will not need to use Die as there is rarely a need to remove objects
you have defined.

However, Die may be useful during development, or in applications that use objects in a dynamic
way, creating them when they are needed, and destroying them when they are no longer of
required.

© 2018 Micro-Robotics Ltd

Objects 47

Trouble shooting

It is easy in Venom to change the type of a variable. This can sometimes cause confusion if you
accidentally change an object into a number. See Changing the type of a variable for more
informetion.

Make a Anal ogue ($30)

a = 129
Here we changed a from referring to an Analogue object into the integer value 129.

What was probably meant was this:
Make a Anal ogue ($30)

a.Value := 129

SUMMARY
® Objects may be created with the Make command.
* |tisgood to refer to objects with meaningful names.

* Messages are sert to objects by placing a dot after the object name and before the message
name.

® Objects may be removed by sending them a Die message - but this is not usually needed.

© 2018 Micro-Robotics Ltd

48

Part 1:Venom Language Tutorial

The Startup Procedure

The startup procedure is one of the most important parts of a VVenom application program. It
determines what the VVenom application does when it is first powered on.

The default startup procedure

There is a default startup procedure that VVenom creates whenever memory is cleared. This
procedure makes various objects that it is useful to have predefined, including the serial
connection to allow programming. The defauit startup procedure is listed below. You can
create alisting of it by typing Li st st ar t up at the command line.

The text of the DEFAULT startup procedure:
TO startup
MAKE system Operati ngSystem
system ErrorAction := NEWDi gital ($20). Asserted | sFal se
MAKE serial Serial Port(115200, 1, 1)
MAKE net | 2Cbus
MAKE | ed OnBoar dLED
MAKE cl ock Real Ti med ock
| F syst em Runnode
[| ed. Fl ash($80)
init
mai n
| ed. Fl ash(0)

]
END

Notice that near the end of the startup procedure two procedures (called i ni t and mai n) are
called. Your application will need to define these.

I ni t isintended for all your Make statements and other initialisation code.
Mai n isthe code that runs your application.

Try creating your own 'main’ procedure in your venom code file and download it (you can hit F7
):
To main

Print “Hello world”, CR
End

Now type run at the command line (or use F10)

-->Run
Hell o worl d
>

Run tells the controller to behave asif it had just been powered on with the ProgranyRun Switch

© 2018 Micro-Robotics Ltd

The Startup Procedure 49

in Run mode. Runis a simple way of testing the startup behaviour of your application.

Y ou can create your own the init procedure in a smilar way (don't forget to download it).
To init
Print "Init is before nain", CR
End

Now run does this;

-->Run

Init is before main
Hello worl d

-->

Notice, in the default startup, that init and main are only run if controller isin Run mode. In
Program mode, only the basic objects are made.

The default startup procedure may be altered but it is usually best left the way it is.

Putting startup code in your code file

Y ou might want to list out and then copy the default startup procedure to your code file so you
(and VenomIDE) can seeit. Don't copy the text above as it may be out of date.

Program mode

Up until this point in the tutorial you have been using VVenom solely in Program mode (Program
mode is used for developing applications).

Whenever you power up your controller in Program mode, you will see the Clear Memory
message:

VM2 Control Conputer running VenonR at 72MHz

Version 2011 02 10

Copyright 2008-2011 M cro-Robotics Ltd.
Cl ear RAW?

Y ou can reply to the question in two ways.

* Y (Yes) means go ahead and clear the memory. Everything in the controller's RAM will
be removed, and you will have a 'clean’ controller to start application development.
Venom defines the default proceduresst art up andi ni t, and thencallsst ar t up.

* N (No) means leave all the procedures you have defined in the controller's RAM, ready
for you to continue developing. The startup procedure is run, though it may not do
much, as the controller is in Program mode.

© 2018 Micro-Robotics Ltd

50

Part 1:Venom Language Tutorial

Run mode

Run mode is used when you have finished developing your code and wart to run it for real inits
intended environment. Run mode is entered when Venom powers up with the Program/Run
switch in the Run position.

Copy to Flash

If your application code hasn't yet been copied to Flash (using the command Pr ot ect (1))
then Venomwill ask at the terminal if you warnt to do this.

If you don't allow that then your application will not run. Thisis a safety feature, as too many
Venom programs had been released into the field with the application code held only in battery
backed SRAM, which later stopped working when they lost their program.

Run mode startup sequence

In Run mode, the startup procedure is called which then calls your init and main to run your
application.

Run mode emulation

As mentioned before, Run mode may be emulated from Program mode by typing Run at the
command line, or hitting F10 from Venoml DE.

Don't let your application end

Y ou may have noticed that the default startup procedure, and the atered init and main above,
terminated by showing the command line prompt (- - >).

The prompt is always issued when the main task runs out of things to do.

Most real applications, however, require the controller to carry on doing its job forever (or at
least until power is removed). Thus your application code should normeally enter some sort of
infinite loop and never terminate.

If you do see a command line prompt when you run your final application, then it is likely that
you haven't written your code correctly.

Example Init and Main

Here the procedures init and main have been redefined from their defavits to run a trivial
application that rattles a relay 10 times a second. Startup has been left unaltered.

© 2018 Micro-Robotics Ltd

The Startup Procedure 51

To init
Make relay Digital (128)
End

To main
Every 100

[
relay . Toggle

]
End

More on the LED

The LED on the controller may be used to indicate information to you, the developer, and later,
to the end-user or person maintaining the equipment.

The behaviour of the LED may be altered by your application program, but it also has some
default behaviour.

Program mode

In Program mode, the LED will be on continuously while at the Clear Memory prompt. Thus if
the LED is seento be on, it is likely that a) the controller has power, and b) it has been left in
Program mode.

After you have responded to the Clear Memory prompt, the LED is turned off, though if you
alter the startup procedure (not recommended) it may then do anything else.

Run mode

In Run mode, the LED is programmed (by the defauit startup) to flash approximately once every
second. Your application can later alter its behaviour to be anything you like, to indicate
problems or other informetion.

Y ou are recommended to use the 'LED on continuoudly' signal to indicate a controller thet is
stuck in Program mode and not use it for other purposes.

SUMMARY

* The procedure startup determines Venom's actions at power-on.

* Venom has three defauit procedures — startup, init and main —which are created when memory
is Cleared.

* |nit and main should be redefined to suit your application. Startup is usually best left asiit is.

© 2018 Micro-Robotics Ltd

52

Part 1:Venom Language Tutorial

* The Program mode switch determines whether VVenom should run your application, or issue

the Clear Memory message and command line prompt.
* The LED may be used to indicate the operational state of the controller.

© 2018 Micro-Robotics Ltd

Your Development Environment 53

Your Development Environment

Right at the start if this tutorial you may have seen how to create a Venom code file and
download it into the VM 2.

If you don't remember this then you can revisit it.

Running your application

Y ou can run your application by typing Run at the command line.
-->Run

Alternatively you can click on the Run icon (»), or hit the function key F10 (both of these simply
send the command Run to the command line).

Run at power on

When you application is finished and deployed in the field you will want the controller to run your
program immediately, every time the power comes on.

To make it do this, you will first need to copy your application from RAM into the more secure
Flash memory. This is usually done using the Protect command.

Then you will need to set Run M ode - by switching off the Program Mode switch. This switch
usually located on the Application Board that the controller is plugged into.

If you put the controller into Run Mode with your application still in RAM the controller will
refuse to run the application immediately, but will also give you an option at the terminal to copy
the application to Flash.

But for now, while you are developing your code, keep your applicationin RAM and keep the
program mode switch in the Prog M ode position. This makes developing your code much faster
and more efficiert.

Developing your code

Y ou can now start adding new code to your file. Whenever you warnt to test what you have
written, just download it (F7), and runit (F10).

Large projects

When your code gets too big for a single file (when it becomes hard to navigate around) then
you can use Venoml DE's Project Manager to manage your project as a set of code files.

This has the added advantage that during code development you can selectively download only
the code files that have changed (5 in Venoml DE), speeding up the edit-run-debug cycle.

© 2018 Micro-Robotics Ltd

54

Part 1:Venom Language Tutorial

See VenomI DE Help for how to create a new project.

Tips and Tricks

Here are a few useful shortcuts that we find useful when programming in Venom using
Venoml DE.

Repeat or Edit commands

Sometimes you wart to exercise or test a particular bit of code, and you don't want to have to
type it in every time at the command line.

Venom remembers the last 20 commands that you sent it (until you clear its memory). Y ou can
recall these commands and edit them using the cursor arrow keys, Home, End, Backspace and

Delete.
Hit Enter to send a command that has been recalled or edited.
Hit ctri-C to abort the command line.

Send any text to the terminal

If you select (i.e. highlight) any text in the Venoml DE editor you can send it to the terminal by
hitting 4. Or, you can send awhole line to the terminal by moving the cursor to the line and
then hitting F4.

Send a commented line to the terminal

It is often useful to list 'test scripts in your programfile - that is command lines that test sections
of your code.

Y ou can comment these lines out so thet they aren't executed when the code downloads, but
Venoml DE allows you to execute them easlly: if you put the cursor on the commented line, and
hit F4, then the line (minus the ; comment character) is sent to the terminal.

To do_it(n)
End
;do_it(10) ;Test 'do_it': put cursor on this line and hit F4.

Note that currently the; must bethefirst character on the line for thisto work.

Find the definition of a symbol

If you need to see a definition of a symbol in Venom, right click on the symbol and choose from
the many options for finding information about that symbol.

© 2018 Micro-Robotics Ltd

Your Development Environment 55

If you place the cursor in a symbol and hit F12 (or ctrl+?) then the editor will navigate to the
symbol's definition.

Find out what your program is doing

If you type Cirl-T at the terminal at any time then Venomwill send text to the terminal indicating
exactly which part of your code is currently executing.

If there is more than one task running, then the code positions of all the tasks are listed (tasks will
be discussed |ater).

Note that, by default, CtrI-T is switched on only in Program Mode.

© 2018 Micro-Robotics Ltd

56

Part 1:Venom Language Tutorial

Multitasking

Until now, al Venom commands have been executed in sequence: one command has to end
before the next can start. However, Venom is capable of executing several sequences at once.
This is known as multitasking. It alows a single controller to handle several independent
processes at the same time.

Multitasking can be hard to understand fully, so we will present a simple model for you to follow
first. This model may well be enough to cover your needs, but if you need to use more
complicated constructions, then these are presented later.

When to use Multitasking

M ultitasking becomes necessary when the application requires two or more processesto be
performed independently of each other. Thet is, wheniit is important not to hold up (or block)
one process simply because the application programis till involved with another process.

Consider the common example of a controller that is controlling a machine that also has a user
interface.

Without multitasking

L ets say the machine is an oven controller with a temperature sensor that needs polling every
100 milliseconds. The sensor is used to control the oven temperature by turning off the heating
element if the temperature is higher than a set target. Y ou could use code like this:

Every 100

[
If tenp_in . Value > target _tenp

oven . Of
El se
oven . On
]

The machine also has a user interface to allow the operator to set the target temperature.
Generally, it is hard for the user interface code to also control the oven 10 times per second: you
have to scan for keys at the keypad in aloop, and make sense of them, all while making sure
that the program always called the oven control code at the correct times. It is possible, but the
finished code is usually quite inflexible.

Here's one example of how it might be written:

© 2018 Micro-Robotics Ltd

Multitasking 57

Every 25 ; Scan rate for keypad.

[
kpd . Update

Sel ect Case key_input . Key ; read a key

Case 0O

[
target _tenp : = target_tenp+l
Print To lcd, target_tenp

]

Case 1

[
target _tenp := target_tenp-1
Print To Ilcd, target tenp

]

If (IndexO And 3) = 0 ;Every 4th tine round the | oop...
[

;control the oven while we are getting keys.
If tenp_in . Value > target _tenp

oven . Of
El se

oven . On]

]

Y ouwould have to make sure that none of the user interface code would ever wait for more
than 100mS.

Y ou would have to make sure that every user interface routine you wrote included the oven
control code, for example if you extend the user interface to a set of menus. For very simple
applications this approach is workable, but it 'blows up' when the control system and user
interface get more complex.

With multitasking

If we use multitasking to solve this problem, we would create a task to control the oven, and a
Separate task to control the user interface.

The oven control task could have this code in it

Every 100
[
If tenp_in . Value > target _tenp
oven . Of
El se
oven . On

The user interface task could use code like this;

© 2018 Micro-Robotics Ltd

58

Part 1:Venom Language Tutorial

Every 30

[
kpd . Update

Sel ect Case key_ input . Key ;read a key
Case 0O

[
target _tenp : = target_tenp+l
Print To lcd, target_tenp

]
Case 1

[
target _tenp := target _tenp-1
Print To | cd, target tenp

These two sets of code could be run simultaneously.

Now we can have the user interface looping every 30 mS, because it might suit the interface to
run at that speed. We still have the oven control loop running at 100 mS.

It doesn't matter to the oven control task if the user interface task stops completely, nor vice
versa

The two tasks are now independent, and the code development for each of them may be
considered separately, except where they explicitly interact.

How many Tasks can luse?

The Venom language allows you to use lots of tasks. That is, you may use more than it would
ever be sensible to use!

Two useful rules of thumb are:

* |f the solution to a problem can be solved elegantly without adding another task, then don't
add a task

* If you find yourself using more than four tasks to solve a problem, then take a fresh look at
your approach before proceeding

Starting Tasks

When a Venom application starts, there is just one task running — the one that executes the
startup procedure. This is called the main task or the command-line task. Some simple
applications may never need ancther task.

A new task may be started with the St ar t command.

This command takes a block of code, and runs that code in a new task. Often the code is just a
single procedure, though any block could be used:

© 2018 Micro-Robotics Ltd

Multitasking 59

Start control task ;start a procedure as a task.

Start [Repeat 20 Print Index,CR] ;start a code block as a task.

Keep Tasks Simple

In general, your application programs will be easier to understand if your task’ s code blocks are
each just a single procedure.

Starting all your tasks shortly after startup (in main, say) and keeping them running forever will
make your code much easier to debug and maintain:

To main
Start control task 1
Start control _task_2
This last function is in the command-1ine task
. so we don't need to start a new task.
user interface task
End

The Prompt

Y ou may notice that the prompt changes when there are other tasks running. Thisis just to let
you know that there are tasks running in the background. Whenever more than one task is
running, the prompt becomes a double arrow:

-->Start Forever []
==>

When you see a prompt like this you can carry on typing commands, but remember: there are
other tasks running in the background still carrying out their instructions.

Stopping Tasks
Any task will stop naturally if it runs out of code to execute.

For example:
-->Start [Repeat 5 Print Index , CR
==> 1
2
3
4
5 [User presses Enter here, to show the prompt]

When the five numbers have been printed, the task runs out of code, and quietly disappears.
Notice that the ==> prompt was displayed before the numbers printed by the new task. Thisis

© 2018 Micro-Robotics Ltd

60

Part 1:Venom Language Tutorial

because the prompt was displayed before the new task had a chance to print the first number.
The third prompt, sent in response to the user typing Enter again, shows the task has gone.
In order to stop atask before it finishes its work, the Stop command may be used.

Stop

Stop needs to know which task you wish to stop. The Start command returns a 'task object’,
which may be used for this purpose, or you may use the task's ID number (see Listing Tasks
later). The following example illustrates starting a procedure as a task and later stopping it.

-->non_task := Start nonitor_in
==>St op non_t ask
-->

The command Stop All will stop all tasks except the main (command-line) task.
The main task can't be stopped using a Stop command. Ctrl-C will stop the main task.

Additionally, typing CTRL-C at an empty command line will stop all active tasks:

-->Start Forever|[]
==>
[User typed CTRL-C hereto stop the task:]

==>STOP ALL
-->

S0, typing CTRL-C once will stop the main task, and typing it again will stop all the other tasks.

Try not to let tasks end

In general we recommend that you try to write your programs so that you start al the tasks you
need near the beginning of your program, and that they all run forever.

If atask does need to end then it will probably have to clean up after itself, which can be difficult
to think abouit.

Listing Tasks

The List Task command produces a list of al the tasks Venom is running, including details of
where each task is.

For exanple:

© 2018 Micro-Robotics Ltd

Multitasking 61

==>lj st Task

Task ID: O
wai ting at the pronpt.

Task ID: 1

in procl (working.vnmline 6)

in proc2 (working.vnmline 10)

in atask started frommin (working.vnmline 14).

Ctrl-T

Perhaps even more usefully, if you type Ctrl-T at any time, then List Task is called, so you can
find out what your application is doing at any time even if you don't have a command line.

The list of tasks will also tell you if any of your tasks are "blocked' - i.e. waiting for another task
to release a resource before it can continue.

Our Simple Multitasking Model

Even apparently simple multitasking systems can sometimes harbour complex problens if they
are not written well.

If you follow the rules in our simple model, then you will be able to use multitasking in Venom
without having to consider any of the more complicated things that can go wrong.

Only one task owns aresource

This means that mgjor resources like the LCD, the Keypad, and the set of Digital I/0O and so on,
should each only be accessed by a single task. 'Y ou should design your code around this idea.

For example, you might have one task that only controls the Digital 1/0, and another task which
only accesses the LCD and Keypad to meke a user interface.

Tasks communicate via signals

If your tasks need to communicate with each other, you can use global variables to signal from
one task to others. In previous examples, the variable target_temp was used as a signal fromthe
user interface task to the control task. That is, the user interface task writes to target_termp, and
the control task readsiit. In this simple model, you should have only one task writing to a

particular signal, though many may read it.

© 2018 Micro-Robotics Ltd

62

Part 1:Venom Language Tutorial

Don't call a procedure from more than one task

It is quite possible, and sometimes useful, for two or more tasks to be running the same
procedure at the same time. However it is likely to break one of the preceding rules, so to be
safe don't do it.

Don't use locking

Locking is a feature of some objects. It is used in more complicated multitasking systems where
it is very useful. However, if you have obeyed the first rule, that only one task uses a particular
resource, then you won't need to use locking.

Consider task latency

For every extra task you have running in Venom, your code may miss up to 2msS of run time.
Thusif any part of your code needs to catch events shorter than 10mS, then you can't have more
than 5 tasks active.

Start tasks at the beginning

All your tasks should be started soon after the initialisation phase of your application, preferably
in a procedure called main.

Don't stop any tasks

If you stop atask (or allow it to end), the chances are you' Il need to start another one again,
which breaks the rule above.

That completes the rules for a pain-free multitasking application in Venom. It is possible to write
much more powerful and sophisticated multi-tasking systems. This is covered later.

SUMMARY

e |f you use our Simple Multitasking Model you should be able to create a robust multitasking
application very easily.

© 2018 Micro-Robotics Ltd

Developing an Application 63

Developing an Application

Y ou have now been introduced to all the mgjor parts of the Venom language except for the
details of the 'object types. We recommend that you now look through the second part of this
manual (Part 2: Object Tutorial) and get familiar with objects by using them.

Then you will be ready to start writing your own application for VM2. There is a checklist for
how to plan and complete your application in Appendix A: Development Checklist.

Advanced topics

This section of the manual continues with more advanced topics. Y ou may not need to learn
about these — glance over them and read any sections that are appropriate to your application.

© 2018 Micro-Robotics Ltd

64

Part 1:Venom Language Tutorial

Debugging

Debugging is the process every application programmer has to go through to remove bugs, or
mistakes, in the program code.

The next pages present some of the tools available to help you find bugs.

Print

The simplest form of debugging available in Venomis Prirt. If there is a problem with the
program you are working on, insert a line to print out the values of important variables, or use
Print to show the order of execution of different parts of the program, or to find out exactly
where an error is occurring.

Print output normally goes to your terminal. 1n some applications the main serial port is being
used by the application. Inthis case the output may be redirected to another device.

Print output may be redirected using the To keyword or by using the Cut put message of the
Oper at i ngSyst emobject (called system). See Text Handlers and Redirection.

Useful places to redirect debug output are:

* To another of the controller's serial ports

®* ToanLCD display

* To aTextBuffer or file object, where it may be stored for later examination
Print is often all that is needed to find most bugs.

Commenting out

Another effective tool for finding bugs is ‘commenting out' lines of code.

This means pultting the comment character at the start of the line of code, so that it's not actually
run. This way you can selectively remove parts of your programto isolate the bits that are going
wrong.

To proc
do_sonet hi ng
try_sonething difficult
do_ot her _thing
End

If you want to quickly comment out a whole block of code you can select the block by dragging
the mouse over it, then hit Ctri+; - i.e. hold the control key down while hitting the ; semi-colon

key.
To un-comment a whole block use Shift+Ctrl+;

© 2018 Micro-Robotics Ltd

Debugging 65

Finding errors in your source

Error listings in Venom2 refer to the file and line number the error was estimated to have occurred
in. Itis very easy to double click on error reports in the terminal and have the editor display the
correct file and line of your program

The lines that are active for error navigation are those that contain a file name and a line number
in parentheses; e.g.

..(main.vhmline 100)....

Sometimes a range of linesisindicated - this is where VVenom has not been able to pinpoint the
source of a runtime error to a single line. When you double click on a range of lines then you are
taken to the first line in the range.

Here's an example of a runtime error, seen when running an application:
Runtine error 5: Un-initialised variable: 'newvar'

in read port (nycode.vnmlines 21-24)
in process_input (nycode.vnmline 30)
in main (mycode.vnmline 39)

in the command |ine.

This report shows where the original error occurred (but only gives a range of lines), and also
lists the 'call history' that led to the error: which procedures were being called when the error
happened. Double clicking on any of the lines with a file name and line number will take you to
the correct point in your code file.

Narrowing down the error line

The runtime error reporter tracks down errors by looking for embedded line number information
in the compiled code. A bit of code may contain lots of embedded line numbers, leading to an
error being tracked down to a single line. However, the code may contain few embedded line
numbers, leading to an error being tracked to within a range of lines.

Y ou can improve the error tracking by temporarily embedding more line numbers in your using
NOP statements. NOP stands for No Operation - i.e. it does nothing, but it does embed a line
number in the code.

Y ou can sprinkle NOP statements around your code to pin point the error.
No file name

If the error report doesn't contain a file name, but instead just lists a line number, then the line
number refers to lines within the procedure. In this case error navigation won't work. This lack

© 2018 Micro-Robotics Ltd

66

Part 1:Venom Language Tutorial

of file name usually occurs if the procedure wasn't downloaded with the IDE's download
commands, but was instead sent as text into the terminal - maybe using Edit b Paste or &
Download selection.

Listing tasks

Y ou can find out what each task in the systemis doing at any time typing Ctrl-T (so long as Cirl-C
and T are enabled - which is the default setting).

Even if you only have one task in your system, Cirl-T is a useful way of finding out whet it is
doing.

Read more

Help

The Hel p keyword will tell you what kind of thing the variable refers to. Many bugs are due to
avariable referring to the something different to what you expected.

-->Hel p | ed
It is the OnBoardLED. Try PRINTing it for nore info.
-->

Print may also be used to find out about the contents of variables. Printing an object will often
tell you useful information abot it.

SUMMARY

® Use Print statements to printout where your programis or the value of critical variables
* Comment out sections of code to find those that are causing a problem
¢ Double clicking on runtime error reports takes you to the source line in the editor

e Ctrl-T will list all the active tasks to the terminal allowing to you see what your programis
doing at any time

© 2018 Micro-Robotics Ltd

Errors and Exceptions 67

Errors and Exceptions
This chapter discusses
® Runtime errors
¢ Handling runtime errors in controlled way

* Using exceptions to handle difficuit coding problems more easily

Runtime Errors

Venom issues a runtime error whenever it fails to execute a command for any reason. Whena
runtime error occurs, the task in which the error occurred is stopped. Anerror report is sent to
the designated error output device: the terminal, via the main serial port, by defauit.

Error reports

Runtime error reports will generally look like the example below.

Runtine error 5: Un-initialised variable: 'newvar'
in read port (nycode.vnmlines 21-24)
in process_input (nycode.vnmline 30)

in main (mycode.vnmline 39)
in the command |ine.

The error text describes the error, and may give supporting information, in this case the name of
the offending variable.

Then the report goes on to list the procedure the error occurred in, together with an estimated line
number. It also gives the list of callers, i.e. the procedures that called the procedure that failed.
Because Venom code is compiled, it is not possible for the error listing to locate the error exactly
in all cases.

When a runtime error occurs, the task in which the error occurs will normally halt. If the error was
in the main task then control returns to the command line. Unaffected tasks will carry on running.

Runtime errors causing program execution to halt like this is fine during the development of a
program, but is unacceptable during operation.

Instead you can deal with runtime errors in two other ways.
1. Reset the controller when an error occurs
2. Traptheeror

© 2018 Micro-Robotics Ltd

68

Part 1:Venom Language Tutorial

Reset on Error

Reset on error

Resetting the controller when any runtime error occurs is the defauit behaviour when the
Program M ode switch input is 'off'’. This behaviour is set up in the default startup procedure,
by setting the 'system variable' ErrorAction.

Catching Errors

The Try/Catch construction allows you to catch or handle errors instead of just allowing the
operating system to handle them - which involves stopping your program!

The Try/Catch construction typically has two parts. the main code and the error handler.
The main code follows Tr y .

The error handler follows Cat ch. It aways starts by listing the name of a variable to hold the
error number should an error occur.

Try
[

]
Catch error_nunber

[

error _handl er

]

mai n_code

How it works

When the program reaches the Try command, the main code is executed. If no errors occur then
the program jumps past the error handler and carries on as normal.

If there was an error, then the program immediately jumps to the error handler, where the error
number may be tested to choose how to handle the error.

In the example below, the procedure will return the result of a division operation, or if there was
adivide by zero error, it will print a warning (and return the value zero).

To try_divide(a,b)

© 2018 Micro-Robotics Ltd

Errors and Exceptions 69

Local r := 0, error_code
Try
[
r:=aDbDwvb; try the division.

]

Catch error_code

[

Print "caught error", error_code, CR

]

Return r
End

Passing on errors

If you want to distinguish between those errors you wart to handle and those you wart to pass
on (either to the operating system, or to 'deeper’ Try/Catch constructions), then you can use Exit
to re-issue the error:

#Define D v_ZERO ERR 7
To try_divide(a,b)

Local r := 0, error_code
Try
[
rr:=aDbDwvb; try the division.

]

Catch error_code

[

Sel ect Case error_code
Case Di v_ZERO ERR
Print "caught div by 0",CR
Case El se
Exit error_code ; pass on other errors to deeper error

handl ers.

]

Return r
End

Exceptions

Exceptions

Try is useful for handling errors - but it can also handle other exceptions. For example you may
wish to jump right out of a set of nested loops. Exit will generate an exception (similar to a

© 2018 Micro-Robotics Ltd

70 Part 1:Venom Language Tutorial

runtime error, but deliberate) that can be handled with Try.

Try
[

For ever

[
Every 10

[
If condition
Exit 0 ; Junp out of the | oops
]
]
]

Note that you don't have to use the Catch part of the construct - in this case if the code Exits, it
just carries on after the Try block. However if you don't use Catch then you can't tell if the loop
was exited because of Exit or a runtime error.

You can also use Try, Catch and Exit to jump out of deeply nested procedure calls. Exit aways

takes an integer value that may be used to distinguish an Exit from a runtime error, or between
different Exit points:

To driver _code

I f unusual _event _a
Exit 100

| f unusual event b
Exit 101

End
later...

© 2018 Micro-Robotics Ltd

Errors and Exceptions 71

Try
[

]

Catch error_nunber

[

driver _code

I f error_nunber = 100
deal _with_unusual event _a
If error _number = 101
deal with unusual event b
El se
Exit error_nunber ; pass on real errors.

]

Task end exceptions

When atask is commanded to Stop this is handled by a special runtime error. Y ou can handle
this error as an exception using Try and Catch, allowing your task to 'clean up' before it ends.

Here is some code that demonstrates how local objects and global locks can be cleaned up
when atask ends, either naturally or if it is sent the Stop command.

© 2018 Micro-Robotics Ltd

72

Part 1:Venom Language Tutorial

#Def i ne TASK DEATH ERROR 32 ; Error code.

To a_tidy_task
Local error_nunber
Aut oDest ruct
Local buff := New Buffer(String)

Try
[
Every 1000
do_sonet hi ng_wi t h(buf f)
]

Catch error_nunber

[
If error_nunber <> TASK DEATH ERRCR

Exit error_nunmber ; Handle other errors 'further up'.

; Tidy up when this task ends:
make_out puts_safe
: Ensure these are unlocked if there is
any chance they were left |ocked by this task.
gl obal obj ect a. Lock(0)
gl obal _obj ect _b. Lock(0)
gl obal _obj ect _c. Lock(0)
End

Runtime error codes

Note that you can find out the value of all the runtime error codes by typing Debug(13) at the
command line.

Tidying up after exceptions

Because Try, Catch and Exit break normal program flow their use can result in parts of your
application being left in unexpected states. For example objects might be left locked that should
not be, or temporary objects might not be removed.

Using the restorative locking scheme can be used take care of any problems with locking.

AutoDestruct will handle problems with temporary objects.

Implicit locking

Y ou may need to take care of locking even if you don't explicitly lock any objects in your code.
Objects are sometimes locked by the systemimplicitly. This is usually in association with printing:

© 2018 Micro-Robotics Ltd

Errors and Exceptions 73

any object that is printed to, or is printed, is locked for the duration of the printing.

SUMMARY
* Try and Catch may be used to handle errors and exceptions.
* Exit may be used to generate an exception or jump out of nested loops.
* Exit may be used to simulate a runtime error.

* Take care with locking or temporary objectsinside Try. See Tidying up after exceptions
above.

© 2018 Micro-Robotics Ltd

74

Part 1:Venom Language Tutorial

Macros

Macros are pieces of program text that have been given aname. They are a very powerful tool,
and can make your code easier to write and understand.

Things that may be useful to name using macros are

* Constant values

* EXxpressions

* Any text used in several different places in your program

Because a macro is defined in one place, you only have to make a change in one place to be
sure that the change is reflected throughout your code.

Even though there are some special rules that need to be understood when using macros, they
improve a program's readability so much that this is worth the extra effort.

Creating Macros
Macros are defined with the #Def i ne construct.

For example:

#Define Pl 3.14159
#Define cl ock _present net . Find
#Def i ne Age . El enment (5) ;invent

To use amacro, just use it's name in your code:

circunference := (2 * Pl) * radi
This is the same as writing

circunference := (2 * 3.14159) *

Macros may also take parameters, for example:

#Def i ne RGB(red, green, blue) (red
Macro paraneters

my_col our := RGB(12, 2, 19)

(160)
new nessage nane

us

radi us

<< 11 + green << 6 + blue) ;

RGB(12, 2, 19) will evaluate to the value 24723 at compile time because of the constant

folding built into the compiler.

© 2018 Micro-Robotics Ltd

Macros 75

Nesting Macros

Macros may be nested to any level. This means that a macro definition can include other
mecros. It doesn't matter which macro is defined first.

#Def i ne hours (mnutes * 60) ;a nested macro
#Define m nutes (seconds * 60)
#Def i ne seconds 1000

Note the use of () to make sure that, when the macro is used, the expression the macro
may be embedded in is calculated with the correct precedence rules. Make surethereisa
gpace between the end of the macro name and the (. Putting a (immediately after the
macro name indicates a macro that take parameters.

Listing Macros

Macros may be listed out:

List Define ; lists all macros
Li st <nane> ; lists out the given macro
Li st Word ; lists out all synbols by type, including macros.

Constant Folding

If you define a macro where there is a lot of calculation of expressions then the compiler may be
able to optimise the calculations so they are done at compile time rather than runtime. Thisis
called constant folding. For example the macro hour s will be compiled down to the value

3, 600, 000 rather thanthe expresson60 * 60 * 1000.

Redefining Macros

Y ou can redefine macros using #Def i ne, but if you do a warning will be issued if the text of the
macro has changed in any way.

If you know that a particular macro will be redefined within your project, use #ReDef i ne
instead. This won't issue awarning.

Removing Macros

If you want to remove the macro and use its name for something else then use #Un Def
<macr onane>

Y ou can re-define the macro at any time.

© 2018 Micro-Robotics Ltd

76

Part 1:Venom Language Tutorial

Null Macros

Y ou may define a macro to be nothing:

#Def i ne sonet hi ng
This will Simply expand as nothing at all.

Macro Limitations

Current limitations that may be improved later

e Macros can only be one line long

SUMMARY

#Def i ne isused to define macros.

Using macros to name constants and expressions makes for better programs.
Macros can take parameters for more sophisticated expressions

Undef isused to remove a macro - the name may be re-used for any other purpose

#Redef i ne is used if you need to use a macro name for different purposes in the same
project

© 2018 Micro-Robotics Ltd

Conditional Compilation 77

Conditional Compilation

Conditional compilation is where the programmer can tell the compiler to include or not include
parts of the program when it is compiled, or to provide different options within the code thet are
selected at compile time rather than run time.

This is often useful when there are different versions of the same basic application program that
match different versions of the hardware, or where there are 'debug options in the code that
need to be turned on or off in a consistent way.

Conditional compilation is done using "preprocessor’ commands, which always start with a #
symbol.

The simplest commands are
#1 f and #End| f .

#I f must be followed by a condition. The condition is an expression that the compiler can
calculate immediately, and which must evaluate to an integer constart.

If the value of the expression is not zero then the lines of code between #1 f and #End| f are
passed to the compiler.

If the value is zero then the code is not passed to the compiler. It is as if they did not exist, or
were commented out.

Example

In the example below, the line of debug code (which prints the values of some variables) is either
included in the program or not based on the value of the macro DEBUG_FLAG.

#defi ne DEBUG FLAG True

To do_sonet hi ng

x := a_function_of(y, z)
#1 f DEBUG_FLAG
Print "The value of x is: ", x, CR
Print "The value of y is: ", vy, CR
#EndI f
Return x
End

Other commands
There are two other conditional compilation commands. #El se and #ELI F.
#El se isused to include different code whenthe #1 f condition is zero:

© 2018 Micro-Robotics Ltd

78

Part 1:Venom Language Tutorial

#1 f CONDI TI ON
do this
#El se
do_t hat
#End| f

#ELI F (short for 'Else If') is used to provide multiple clauses:

#If VALUE = O

thi s_code
#ELIF VALUE = 2

t hat _code
#ELIF VALUE = 3

t he_ot her _code
#El se

none_of the_above
#EndlI f

All these conditional compilation commands operate on blocks of lines in your program code. A
line with one of these commands on it should not have any other code on it, though comments

are OK.
Nesting
#1 f , etc, can be nested:

#If CONDI TI ON_A
#Defi ne CONST_VAL 10
#1f CONDI TI ON B

#Def i ne MAX VAL 34
#Endl f
#Endl f

© 2018 Micro-Robotics Ltd

Optional parameters 79

Optional parameters
Optional parameters

In Venom you can declare that some parameters to a procedure are optional - that is, you don't
have to supply the optional parameters when you call the procedure.

Optional parameters are always at the end of the parameter list. When you call a procedure that
has optional parameters you can only omit parameters from the end of the parameter list.

When an optional parameter is not supplied it is given the value integer zero, just like
uninitialised Local variables.

Optional parameters are declared by putting [] around the optional parameters, asin the
following examples.

Here two out of the three parameters are optional:
To procl(a,[b,c])

End

Here all the parameters are optional:
To proc2([a,b,c])

End .

To call a procedure with optional parameters just treat it asiif it took the number of parameters
you wish to send as in the examples below:

procl(1)

procl(10, 3)

procl(10, 3,)

proc2

proc2(1, 2, 3)

Processing optional parameters

Y our procedure code will often need to know how many actual parameters have been passed to
it - the Venomkeyword Par antCount returns this number.

Y ou can also access all the parameters to a procedure or method by using the VVenom function
Par anet er (n) , which returns the value of the nth parameter, where the first parameter is

Parameter (1).
Y ou can determine the data type of a parameter using the Type Of operator.
See the Venom Help file for more information on all these Venom keywords.

© 2018 Micro-Robotics Ltd

80

Part 1:Venom Language Tutorial

Further Expressions

This chapter introduces some of the more advanced types of expression. Some of these
subjects are covered in much more detail in the Venon2 Help File.

Initialising Global Variables

Venomwill create a global variable the first time it sees its name. However, it doesn't assign the
variable any value: you have to do that.

If you don't give a variable a value, then it has the value 'urrinitialised' and it is an error to try to
read it.

The procedure below is used to initialise a variable called var :
To initialise
var :=1
End

However, var is still not assigned a value, as the procedure has not yet been called. Below,
we've tried to read its value before it was assigned:
-->Print var

Runtime error 5: Un-initialised variable: 'var'
in the command |i ne.

This is one of the most common runtime errors you will see. 1t is often good to make sure all the
global variables you use are initialised in your init procedure, or elsewhere.

Using Hexadecimal and Binary numbers

In all of the examples so far, the numbers have been in decimal notation i.e. they are made up of
the digits 0 to 9. In computing, other number bases are often used. Of these, Venom supports
hexadecimal and binary. 1n hexadecimal (base 16), numbers consist of the digits O to 9 and the
letters A to F (or atof). To indicate that the number is hexadecimal, the $ symbol should be
used to 'introduce’ the number. The example below prints the value of $3FFF.

-->Print $3FFF, CR

16383
-->

Note that the number will still print as a decimal. Numbers can be printed in hexadecimal by
using the ~ symbol. For example:

-->Print ~16383, CR
3FFF
>

A similar systemis used for binary except that the symbol is %and values can be printed in

© 2018 Micro-Robotics Ltd

Further Expressions 81

binary using ~~. For example:
-->Print ~~1253, CR 9100001, CR
10011100101

33
-->

Characters and String Constants

Sometimes your program may have to deal with character information. To help with this you can
express a character constant by using the ASCII character within single quotes:

-->an_integer :="'A
-->Print an_integer, CR
--> 65

-->

String constants

String constants are used to hold strings of characters. These are usually expressed as text
within double quotes, as in some of the Pr i nt commands we have seen alreadly.

A string constant may be assigned to a variable:

-->str := "This is sone text"
-->Print str,CR

This is sonme text

-->

Or passed as a parameter to a procedure;
-->ProcessText ("Some text")

Y ou may also find the length of a string constarnt:
-->Print str.Length , CR
17
-->

Embedded text

There is another way to create string constants, which is called embedded text. Instead of using
guote characters to delimit the string, the following delimiters are used:

<<<:this is the text>>>

There are several advantages to using embedded text:

1. Embedded text can spread over muitiple lines

2. Embedded text text is literal, so no 'escape coding is needed for special characters
Embedded text is mostly used to embed other languages within Venom code, e.g. HTML for

© 2018 Micro-Robotics Ltd

82

Part 1:Venom Language Tutorial

web pages.
For example:

Print <<<:<h1>Title</hl>
This is the body text<p>>>>

Notes

Note that all string constants are constant. Y ou can print them, find their length, send them as
parameters and refer to them with variables, but you can't change their contents. This is more
than enough for many simple applications.

For more flexibility in text handling see String objects and Text Buffers.
Also see the sections on printing strings and Arrays of strings.

String constant concatenation

If two string constants appear one after another on the same or different lines, separated only by
white space or comments then they will be concatenated - i.e. they are joined together as a
single string constarnt.

This can be useful sometimes, for formetting your code into an easy-to-read form, but it can also
lead to confusion.

For example the following array only has one (long) string in it, repeated five times, because all
five quoted strings have been concatenated into one, and then the four empty elements of the
array are filled with the last value supplied.

Array fruitnanmes (String, 5)
" Appl e"
" Pear"
"Banana"
"Pl unt
" Apricot"

End

Thisis equivalent to

Array fruitnames (String, 5)
" Appl ePear BananaPl unApri cot "
End

And printing it we see

© 2018 Micro-Robotics Ltd

Further Expressions 83

-->Print fruitnames

Appl ePear BananaPl umApri cot
Appl ePear BananaPl umApr i cot
Appl ePear BananaPl umApri cot
Appl ePear BananaPl umApri cot
Appl ePear BananaPl umApr i cot
-

To get the desired behaviour commeas are needed between each string.
Array fruitnanes (String, 5)
" Appl e",
"Pear",
"Banana",
"Plun',
"Apricot"
End

Escape sequences

Sometimes you might want to put the quote character, " , into a quoted string. This is obviously
not possible in a straightforward way. Instead you have to use an escape sequence (or you

might use embedded text).
An escape sequence isintroduced witha\ . To put aquoteinastring use\ " :

-->Print “There's a\” quote in here sonewhere!”
There's a" quote in here sonmewhere!-->

The complete list of escape codesiis:

© 2018 Micro-Robotics Ltd

84

Part 1:Venom Language Tutorial

Sequence | Yields the character ASCII

\\ Backsglagh: \ 92 |$5C
\" Double quotation mark: " 34 |$22
\$hh 1 Any ASCII character from hexadecimel - hh

\a Causes a terminal to emit an audible alert 7 $07
\b Backspace 8 $08
\ f Form feed 12 |$0C
\n New line 10 |$0A
\r Carriage Return 13 | $0D
\t Horizontal tab 9 $09
\v Vertical tab 11 | $0B
*hh | Bitmap reference - hexadecimal number - hh

Strings on the command line

There is one more thing about string constants that you should know. Each time you use a string
congtant on the command line, then a small amount of memory is lost to the system until the
next time the system restarts.

This doesn't happen when strings are used within procedures. It would only metter if your
application relied on using large numbers of string constants on the command line, in which case
you would need to restart VVenom if memory got low. This would be a very unusual application
of the Venom command line.

Bitwise Operators

Bitwise operators work at the level of individual binary bits within an integer.
The most commonly used bitwise operators are And, Or , Eor and | nv
And, O and Eor each operate on two values.

And

And produces a binary '1' in the result only if there is a binary 1 in both the first value and the
second value it is given, see the calculation set out here:

© 2018 Micro-Robotics Ltd

Further Expressions 85

9400100101010101
And
9400110100101010

%4.00100100000000

And is often used to reset bits within a binary number.

Or

O produces a binary '1' in the result if there is a binary 1 in either the first or the second (or
both) of the valuesi it is given:

%400100101010101
O
%400110100101010

%400110101111111

O isoften used to set bits within a binary number.

Eor

Eor (for Exclusive Or) produces a binary '1' in the resuit if thereisabinary 1 in either the first
or the second value (but not both):

24.00100101010101
Eor
24.00110100101010

%900010001111111

Eor is often used to optionally flip bits within a binary number.
Inv

| nv takes just one value and inverts each binary bit to give the result:

| nv
94.00110100101010

%911001011010101

Anexample of And and Or being used is

result := input_value And 240010101 O %0 ; Reset sone bits
and set others.

Shift operators
There are two more bitwise operators that shift bits within an integer to the left and right by a

© 2018 Micro-Robotics Ltd

86

Part 1:Venom Language Tutorial

specified amount: << and >>.

For example:
result := input_value << 5
or
result := input_value >> shift_anount

Memory Expressions

It is possible to access the memory of the your Venom:-based controller directly using the ?
operator. Thisis not normally required. It is discussed in detail in the Venom2 Help File.

Pointer Expressions

Note to C programmers. Pointersin Venom are only used to 'pass by reference - never as
pointersinto memory. Everything you might use a pointer for in C you should use an
object for in Venom. There may sometimes be an exception to this, in which case you can
use the ? operator. Thisis discussed in the Venom2 Help File.

Passing parameters by reference

When a command such as that shown below is executed, the value of variable alpha is set to the
value of variable beta.

-->al pha : = beta

-->
Occasionally it is necessary to get a reference (or 'pointer') to the variable instead of its actual
value. For example, the following procedure was intended to take a variable and alter its value
such that it lies between the two limits given. The procedure shown below is an example of its
use.

© 2018 Micro-Robotics Ltd

Further Expressions 87

To range(var, | o, hi)
If var < lo

var :=1o
I f var > hi
var := hi

End
-->num : = 53

-->range(num 25, 35)
-->Print num CR
53

-->
It can be seen that it has not worked — the value should have been changed to 35. The reason
for its failure is that when the procedure is called, the value of numis given to the procedure.
The procedure successfully ranges the value, but this has no bearing on the value of num. What
is required is to give a pointer to numto the procedure. A pointer to a variable is obtained by
placing a @symbol before it, as in @ um- thisis now a pointer to num. To 'follow' a pointer to
its variable, the! symbol must be used. The correct version of the procedure is shown below.

To range(var _ptr,lo,hi)
If I var_ptr <1lo
I var_ptr:=10
If ! var _ptr > hi
I var_ptr: = hi
End

-->num : = 53
-->range(@um 25, 35)
-->Print num CR

35
-->

Pointers to objects

It's not usually useful to take a pointer to an object.

This is because the variable name thet refers to an object - like dt inthe code below - is already
apointer, and it doesn't add anything useful to refer to that variable with a pointer.

Make dt DateTinme ; 'dt' is like a pointer to the object
creat ed.

© 2018 Micro-Robotics Ltd

88

Part 1:Venom Language Tutorial

Procedure Pointers

It is possible to obtain a pointer to a procedure. This can be useful when choosing between
several courses of action.

Simple command languages may be created using this feature. The following example uses an
Array of procedure pointers to act on commands coming over a serial network.

To turn_on
led . On
End

To turn_off
led . Of
End

To report
Print |ed
End

Array procedure_table (@umy, 3)
@turn_on
@turn_off

@report
End

To run_protocol
For ever

[

action := serial . Get - ‘A’
I procedure_table . Elenent(action)

]
End

The pointer expression
I procedure_tabl e. El enent (acti on)

Reads one of the elements out of the array depending on the value of act i on, and then uses
this as a pointer. As the pointer is a procedure pointer, it calls one of the three procedures.

Parameters to procedure pointers

Procedure pointers may also be sent parameters. 'Y ou have to help Venom decode this rather
complicated construction by using parentheses.

© 2018 Micro-Robotics Ltd

Further Expressions 89

Used as a statement

Additionally, if you are calling a procedure pointer as a Venom statement it is good practice to
use sguare brackets, as shown below to stop the preceding expression (proc_a in this case)
taking the opening parenthesis as a parameter list:

To procedure

proc_a
[(! procedure_table.(n)) (parl , par2)]
End
If you didn't use the square brackets then the opening parenthesis would be seen as a parameter
list to proc_a.

Used as an expression

However, if you wish to use the value returned by the procedure call, then the square brackets
cannot be used. For exanmple:

a := (!procedure_table.(n)) (parl , par?2)

Note that in both cases we have omitted name of the Element message. This is a shortcut
allowed by Venom

© 2018 Micro-Robotics Ltd

90

Part 1:Venom Language Tutorial

Further Objects
This chapter introduces some of the more sophisticated things you can do with objects.

Printing Objects

Just as numbers and strings may be printed, Print is also capable of printing objects. It has been
shown already that the Print command can be used as shown below:
-->Print thernoneter.Value, CR

45
-->

However, the object itself may also be printed:

-->Print thernoneter, CR

[Anal ogue: 45]

-
It has a similar effect. The printing of the object is left up to the object itself — it is just instructed
to print itself (it is sent a Print message internally). As a resuit, an object can print whatever
informetion it deems to be useful. It usesthe[] asareminder to the programmer that it isnot a
simple number.

A particularly useful object to print is the 12C bus, usually called net. This lists all the devices it
has connected to it.

-->Print net
Devi ces on the |2C network No. 1:

Nunber Channel s Devi ce Descri ption
160 PCF8582/ 83. . . RTC/ EEPROM . .
-->

In this case, an EEPROM was found.

When objects are printed, they may take account of any format specifiers sent (using the colon
operator :). Eachobject will interpret print formetting in its own way. See the definition for
each object inthe Venon2 Help File.

Using Nil
There is a special type of object called Ni | .
In short, it is an object that accepts any message (and ignores it).

Ni | returnsthe value O (i.e. Fal se) to any message that is sent to it, and ignores any text
printed to it.

It can be useful to use Ni | inthe place of areal object or number to indicate 'nothing’ or 'no
vaue. Ni | may be tested for equality or inequality with anything else:

© 2018 Micro-Robotics Ltd

Further Objects 91

If x = N |
Print "x is NI", CR
If x <> N |
Print "x is not Nil", CR

Object Expressions

When you create an object with Make, you are both creating an actual object in the Venom
system, which may also affect the memory or hardware in some way, but you are also creating a
variable that refers to that object.

-->Make str String(10000)
-->

Here, st r isthe variable that refers to the String object we created (which has no name of its
own).
Y ou can do all sorts of things to the variable, but that doesn't affect the object.

For example you can ‘copy’ the value of one variable into another:

-->str2 = str
This has not created another String, but just another variable that refersto the same String.

You can also 'lose' the object:
-->str = nil
Here, the original String still exists, taking up useful memory, but the variable st r doesn't refer

to it anymore and can't be used to accessit. Inthis example we still happen to have a variable
thet refersto it (st r 2).

The above examples are not suggestions for how you should write your Venom code, but an
attempt to illustrate how objects and variables are related.

Here are some examples of how objects may be used in a more sophisticated way.

Firstly, an object may be passed to a procedure as a parameter. For example, the procedure
below will output ten pulses on any object that understands the message Pulse.
To pul se_ten(obj)
Repeat 10

obj . Pul se
End

Secondly, a procedure may create an object, modify it, and return it:

© 2018 Micro-Robotics Ltd

92

Part 1:Venom Language Tutorial

To give _nme_a string _filled with(contents)

Local str := New String(size)
Print To str, contents
Return str

End

In this case you should be careful to manage the objects created so as not to lose track of them,
and thus 'leak’ memory from your system

Sending Messages to Expressions

Messages are only sent to objects, however, an object may be represented by an expression
that is more complicated than a simple variable name. Some of these are:

® A procedure that returns an object as its resut
* A message that returns an object
* Following a pointer
We will look at the most useful of these. The rest may be treated as exercises.

Sending messages to objects held in a Buffer

It is possible to create a special type of Buffer object that can hold any other kind of object - or
any venom variable type. Thisis refered to as a Buffer of Any:

Make ba Buffer (Any)

Y ou might choose to put some digital objectsiniit:

Repeat 16
ba. Put New Di gital (128+] ndex0)

Then you can send them any message acceptable to a Digital object - here sent to the object in
the buffer's element number 5:

ba. (5). On

Creating Temporary Objects

Sometimes it will be necessary or useful to create an object on atemporary bass.

Temporary objects are often held in local variables. Y ou can't use Make with a local variable,
but you can use the keyword New:

Local workspace := New String(100)

© 2018 Micro-Robotics Ltd

Further Objects 93

It is necessary to remove these temporary objects, or else each time the procedure in which they
are defined is called, a new set of temporary objects is created, but the old ones are not
removed. This leads to a 'memory leak’. Eventually Venom will run out of memory, until it next
restarts.

Usually its best to remove temporary objects when the procedure they were defined in
terminates. However it can be very difficult to maintain code where every possible exit route
froma procedure has to be covered.

AutoDestruct

AutoDestruct may be used to remove temporary objects no matter now a procedure
terminates.

Any local variable that is declared after AutoDestruct is checked on exit from a procedure; if it
contains an object, then the object is removed by sending a Die message.

AutoDestruct covers al normal procedure terminations - including End, Return, Exit and Try/
Catch. It doesn't cover the case when a task terminates on an uncaught runtime error or Cirl+C.

Local variables that are defined before AutoDestruct are not checked.

To proc
Local a := 10 ; Don't check this one
Aut oDestruct ; On exit, renove these:
Local workspace := New String(100)
Local tenp := New Array(lnt, 10)

End

Accessing dead objects

If you don't keep track of the objects you are creating and destroying thenit’s possible to try to
access a dead object. Venom has an internal mechanismthat detects this most of the time, but
it’s better to get your software design right to begin with.

Here's an example of how you might accidentally try to access a dead object:

-->Make b Buffer(String)

-->C =D

-->b.Die

-->c. Put (0)

Runtinme error 25: Message to dead object

at $260408 in the command |ine.

-->
Here we kept a reference to the object, c. Even though we deleted the original reference, the
other one could be used to try to access the object. Venomintervened with a runtime error to
make sure the system didn't crash in an undefined manner.

© 2018 Micro-Robotics Ltd

94

Part 1:Venom Language Tutorial

© 2018 Micro-Robotics Ltd

Further Printing 95

Further Printing

This chapter introduces further facilities available from the Print command, and introduces the
PrintF message.

Text Handlers and Redirection

Normally Print sends its output to the main serial port. It is possible to print text to a different
object using Print To.

Changing the object to which text is printed is called redirection. The object to which the output
is printed might be one of the types listed below, which are able to accept prirt.

Object Type Result

AlphaLCD The text is displayed on the alpha- numeric LCD
SerialPort The text is sent directly to the serial port
Buffer(String) The text is printed to the Buffer

File(String) The text is printed to the file

GraphicsLCD.Window The text is printed in the window

Real TimeClock The text is interpreted to set the time and date

DateTime The text is interpreted to set the time and date

For example, the following prints the value of counter on the LCD.

-->Print To lcd , counter , CR
-->

Note that the comma after the object being printed to is compulsory.

The object to which a plain Print (without "To") normally sends print jobs may also be changed —
see the Operating System message Output, in the Venon?2 Help File.

© 2018 Micro-Robotics Ltd

96

Part 1:Venom Language Tutorial

Further Printing Keywords

Aswell as the printing keywords already introduced, there are a number of others. No single

object understands all of these.

Keyword Effect

BEEP Emits a beep on the termindl

BS Moves the cursor back one character

CENTRE Changes the text justification mode of the graphics LCD to
centred text

CHRnN Prints an ASCII character of the given number

CLS Clearsthe screen

CR Moves to the beginning of a new line

FONT Changes the font thet the text is printed in

GOTOXY (xy) | Movesthe cursor to the given location

HOME Moves the cursor back to the top-left of the screen

LEFT Changes the text justification mode of the graphics LCD to
flush left text

RIGHT Changes the text justification mode of the graphics LCD to
flush right text

For more details on the use of a keyword on a particular device, refer to the object type inthe
next part of this manual, or refer to the Venom?2 Help File.

How PRINT works

All the text handlers described above accept ‘ extended’ text consisting of normal and extended
characters. It isthe task of the Print command to convert all the expressions in the print list into
acceptable extended text. During this process it divides up the total print output into packets of
text. Each'packet’ is a collection of up to 200 characters that are assembled before being

passed on to the text handler as a print job. Short Print statements will cause single, less-than+
full print jobs to be used, and very long ones will require many print jobs, one after the other, to

© 2018 Micro-Robotics Ltd

Further Printing 97

carry the output.

Since it isimportant that no more than one task writes to an object at any time, the Print
command locks the object being printed to while all the text is sent — only when it has finished
will it unlock it.

When an object is asked to print itself, it may lock itself so that its contents are consistent during
the print process.

PrintF

Venom2 aso has a PrintF message that can be sent to any object that can accept prirt (i.e. can
be PRINTed To). Thisworks in a very similar way to the C function of the same name

In genera Print is more useful at the command line - for printing small numbers of items, and
PrintF is more useful for printing within your application - for variable items embedded in aline
of text. Both may be used in either context.

Venom2 has extensions that add to C's printf, e.g. %@ means print an object, %b is for binary.

In application code

The lines

serial .PrintF("The tenperature is % C on %20 at %3o\n",
tenperature, clock, clock)

ad
Print To serial, "The tenperature is ", tenperature, "C on ",
clock: 2, " at ", clock:3, CRn"

both produce this output:

The tenperature is 0OC on 17-Feb-09 at 13:11:40

But the first is easier to write, understand and maintain.

At the command line

However, at the command lineit's a lot easier to use

Print clock
than

PrintF(" %", clock)

See the Venom2 Help File for details of how PrintF is used.

© 2018 Micro-Robotics Ltd

98

Part 1:Venom Language Tutorial

Further Multitasking

This chapter discusses the more complicated aspects of multitasking. Y ou only need to read this
if you can't fit your application into our simple model, though you may wart to read it out of
interest.

Task Management Scheme

The Venom operating system uses a 'Round- Robin, Pre-emptive' task manager. 'Round-Robin’
means that there is a simple list of tasks, and each is scheduled to runin list order, starting over
again when it reaches the end of the list. There is no task- priority scheme.

'Pre-emptive’ means that the VVenom operating system takes charge of when task swaps happen
— it's not under your control.

Atomic operations

An atomic operation is one that can't be split into more than one part by atask swap. Venom
has some operations that are defined as atomic.

* Writing a variable

® Reading avariable

® | ocking an object

* Semaphore object operations

The atomic nature of these operations is importart, to allow tasks to share simple resources
easlly.

Processing Power and Task Latency

There are penalties for using a large number of tasks. Clearly, if Venomis handling many tasks
at onetime, it cannot runthemasfast. Also, a significant amount of memory is required for each
extra task running.

Since, at a very low level, the microprocessor in the controller cannot execute more than one of
its instructions at a time, multitasking has to be done by rapidly switching between the tasks,
executing a little bit of each task at atime. This has the appearance of all the tasks running at
once. If al the tasks are using all the processing power the hardware has to offer, then each task
will low down proportionally to the number of tasks that are running. So if there were three
tasks, each task would be running at one third its normal speed. Fortunately this is unusual as
most real applications have tasks that do some work and then wait for a period of time or for an
external event. A waiting task takes very little resource.

Unfortunately there is a system property that does suffer with every task added: Task Latency.

© 2018 Micro-Robotics Ltd

Further Multitasking 99

Venomwill swap tasks roughly every 1mS, with maximumtask duration of 2mS. Thus if there
are, say, five tasks running, the maximumtime that any one task will have to wait is5 x 2mS =
10mS. Thisis known as the latency of the system. It is likely that most of the time no task will
have to wait this long, but many applications are dependent on the wor st-case delay so they
don't missimportant external events.

Task Objects

When you start a new task the St ar t command returns a Task object. This object is
associated with the task and it allows you to monitor or control the task. For example you can
send the task object the following messages:

Done - returns True if the task has finished (i.e. it is dead)

Di e - thsdoesthesameas St op t askobj

Task-local state

The task also has an active variable called St at e. This can contain any Venom value - usually
anobject - infact it's best if it's a user-defined object.

Setting the task's St at e allows you to associate a whole set of values withatask - itisasif it
has its own private set of global variables.

Note that atask's St at e isinitialised to the value Ni | .

Current task object

There is an object that represents the current task, and it is represented by the keyword Task.
For example, you can set the St at e for the current task:

Task. State : = New MyCl ass

Setting up atask's state
This is the best way for a new task to set up its State:

To task_code
Aut oDest r uct

Local state := New TaskState
Task. State := state
End

Note Aut oDest r uct isused to autometically remove the state object when the task dies.
Y ou can detect when a newly started task has initialised it's state by comparing it with Ni | :

© 2018 Micro-Robotics Ltd

100

Part 1:Venom Language Tutorial

To main
tsk := Start task _code
Anait tsk.State <> Nil

End

And this is a skeleton Class you might use for atask's state:

Cl ass TaskSt at e
Val ue | nt

To Initialise
Val ue := 10
End
End

Y ou can add any members and methods to the Class that you need for your application.

Sharing Resources

Every application has inputs, outputs and data storage of some kind. Each of these thingsis
caled aresource. For example, akeypad is aresource, and so is a display. Sometimes two or
more resources are always used in conjunction with each other, and may usefully be considered
asingle resource. Inthis case, the keypad and display constitute the user interface resource.

Allocate Resources to Tasks?

Whenever two or more tasks have to share a resource you will need to be careful in your
programming. Infact, it is sometimes so hard to design an application that will share a resource
among tasks in real time that it is often easier to rewrite the application so that each major
resource is only ever accessed by onetask. Inour earlier exanple thisis illustrated by the user
interface task, which is the only task that ever 'talksto' the display.

Easily-Shared Resources

Some kinds of resources are very easy to share. These are the ones that have a single value that
you wart to read, but not write to. Sharing these is just a matter of reading the value. An
example of this is reading a Venom integer or float value from a global variable.

Signalling between Tasks

Because reading a variable won't cause resource-sharing problems, the smplest way for tasks to
pass information to each other is by using global variables to signal each other. Y ou just have to
obey the rule:

© 2018 Micro-Robotics Ltd

Further Multitasking 101

Only onetask owns a variable at any time.

That is, only one task may write to the variable, though any number may read it at any given
time.

We saw the example of the value target_temp being used this way earlier.

Task-local state

Though is it smple to signal between two tasks using a global variable, it is not easy to do
anything at all complex or sophisticated using global signals. It is better to use the task's St at e
to do the signalling. Because the state may be a user-defined Class, you can create any
signalling scheme you wartt to.

Synchronising Tasks
There are circumstances where you can have a global variable signalling two ways.

In these cases, the value of the variable performs the function of determining which task ownsit.
For example, the main task may signal another task to go and perform an operation. The other
task can use the same signal to report that it has finished. 1n the example below, we assume
each procedure is running in a separate task.

To mai n_task
signal := True ; signal sub-task to act
do_sonet hi ng_el se
Await signal IsFalse ;wait for signal back
carry_on

End

To sub_task

For ever
[
Awai t si gnal ;wait for signal before acting
do_operation ; act
signal := Fal se ; si gnal back
]
End

Note that you can use atask's State to signal in Similar ways.

© 2018 Micro-Robotics Ltd

102

Part 1:Venom Language Tutorial

Sharing other resources

The kinds of resources that are difficult to share are those that are written to, or otherwise
affected, by more than one task.

The most common problem encountered with these sorts of resources is where a task might
interfere with (or corrupt) another task's use of the resource.

The next most common problemis where an important task is held up while it waits for a lower
task to finish using a shared resource.

Examples of where you will need to consider the implications of sharing a resource are:
* Sharing adisplay device — if you are not careful the display may be messed up

® Reading frominput devices like a serial port or a keypad — one task may 'steal’ keys or
characters that another task was expecting

e Using data structures like Array and Buffer — the data set may become inconsisternt
® Using networks and buses — you may mess things up on the bus, or hold up other traffic

Consder this smple exanple:

One task has aline of code that increments a global variable. A different task has a line that
decrements the same variable.

count :=count + 1 ;in task A; In Task A

count :=count - 1 :intask B :; In Task B

Say count starts off with the value 4. 1t is possible that Task A could read count and add 1 to it.
Then, just before it wrote 5 back into count, Task B could come in, read count, and subtract 1
fromit, and write back the answer 3. Task A could then get back control and finish its job,
writing 5 incourt. '5' is, of course, the wrong answer. The wrong answer only happens when a
read-then-write access to count is broken by a task swap that also needs to write court.

Asthis kind of problem only shows up intermittertly, it is important, early in the software design
process, to identify situations where it might arise and make sure it is dealt with before it shows
up, rather than in the field.

Ask yourself the question: ‘Are there any resources or variables in my system that more than one
task hasto affect?

It is worth repeating: it is often easier to re-write an application so that none of its
tasks have to share a resource than to try to make resource sharing work.

© 2018 Micro-Robotics Ltd

Further Multitasking 103

Sometimes you just have to share resources among tasks. Resource Locking is the mechanism
that allows this to work. Thisis discussed in the next section.

Idling

In order to save electrical power, the Venom operating systemwill use a'halt’ instruction in the
microcortroller's instruction set, to put the CPU into an idle mode whenever possible. 1t's worth
knowing which kind of VVenom instruction will cause the controller to idle, and those which keep
it awake.

The most common examples are Wait, Await and Every. See the appendix F: Optimisation for
more details.

Local Variables and Tasks

It is possible for two tasks to call the same procedure at the same time. If all the variables
altered by the procedure are local variables, there will be no problems, since not only are local
variables local to a procedure, they are also local to the task aswell. More accurately, they are
local to each particular time a procedure is called (termed an ‘instance’ of the procedure).

Whenever a procedure is called, it allocates some stack memory in which to store the values of
the local variables and so, even if there are many instances of a procedure, they will each have
their own set of values for the local variables and will therefore be entirely independent.

Y ou should beware of using global variables and objects in procedures you call this way, as you
may run into the resource- sharing problems detailed above.

Task-local variables

Each task may be givenit's own private set of ‘global’ variables by assigning an object to the
task's St at e.

See here for more details.

© 2018 Micro-Robotics Ltd

104

Part 1:Venom Language Tutorial

Locking

Problems can occur if a number of tasks use the same object. For example, if a number of tasks
were all writing to an LCD at the same time, the result would be unintelligible - or might even
cause the systemto crash.

To solve this type of problem, objects may be 'locked’ and 'unlocked’. This means that one task
can clamthe object as its own (‘locking’ the object), and then it can do anything with it — other
tasks that want to use the object must wait until its owner (the task) finishes with it (and 'unlocks
it). Clearly, an object may only be locked by one task at atime.

Y ou may also use the locking mechanism to deal with the shared global variable problem seen
before. Thiskind of statement:

count := count + 1
when used in multiple tasks is called a critical area of the code. Thisis discussed later.

Implicit Locking
Some Venom operations lock one or more objects in order to carry out their work.

The most common exanmple is of this implicit locking is printing. \When you print to an object (i.
e. send text to it), the Venom Print Manager will always lock the object for the duration of the
Print command. Thus you can be assured that the output from the Print command will never be
interrupted by another task's print output.

Also, some objects will lock themselves while they are being printed, so that they remainina
stable state for the duration of the print operation.

Because of implicit locking you should be able to write most Venom applications without having
to explicitly lock anything.

Locking Objects

Some object types have alock mechanism built into them. Objects with no lock will still accept
all the locking messages, but will ignore them. Locking behaviour is documented as part of each
object's definition.

When you lock an object, if the object is not locked, or it is already owned by the current task,
then the object is claimed for the current task and execution continues normally.

However, if the object has aready been locked by another task, then the current task hasto
wait. While waiting, the lock is periodically tested until it becomes free. It is then claimed, as
above, and execution continues normally.

When atask is waiting for alock to become free, it does not use its whole 1mS task dot.
Instead, it swaps out immediately, allowing other tasks to run.

© 2018 Micro-Robotics Ltd

Locking 105

Task lists show blocking

Whenyou list out whet all your tasks are doing using List Task or Ctrl-T, the listing will tell you if
any of the tasks are blocked, i.e, waiting on a lock held by another task.

Here the user hit Ctrl-T while two tasks where running, one blocked by another:

Task ID: O
in procl (working.vnmline 87)
in the command i ne.

Task 1D 2

Bl ocked by Task 0

in b.Lock

in proc2 (working.vnmlines 88-89)

in a task started fromprocl (working.vnmline 86).

Incremental Locking

The classic way to lock an object, and then unlock it is illustrated below:

Obj . Lock
oj . .. ;Use the object
oj . Unlock

Locking and unlocking may be 'nested': if you lock an object twice, you will need to unlock it
twice before it is available to other tasks:

o) . Lock ;if it was free here...

Obj . Lock

oj . ..; [Use the object]

oj . Unlock

) . Unlock ;.it'Il now be free here.

© 2018 Micro-Robotics Ltd

106

Part 1:Venom Language Tutorial

Restorative Locking

The above scheme works fine for most code, but consider what would happen if your code had
to deal with an exception by using Exit while an object was still locked.

Try
[
obj . Lock
obj ;use the object
i f exception
Exit 100
obj ;use the object

obj . Unlock

The object no longer gets unlocked as many times as it should. This problem can also occur
when using Return or when responding to runtime errors with Try.

Y ou can avoid situations like this with complicated programming, but there is another way of
using locking that avoids the problem altogether.

This scheme uses the fact that Lock returns a result: the number of times it was locked before the
Lock message.
N := obj . Lock

Additionally, Lock may be assigned avalue, N, to lock an object to a given level (as if Lock had
been called N times).

obj . Lock := N ;Lock obj N tines

This allows the following scheme to be used:

To proc

Local |ock state

| ock_state := obj . Lock ; Lock it and record pre-existing
| ock Ilevel.

obj . .. ; Use the object

obj . Lock := lock_state ;restore pre-existing |evel.
End

This will work even if exceptions cause some lock-restoring commands to be missed.

You can also send the message obj . Lock(0) if you want to make sure the object is not
locked by the current task at a particular point in your code. If the object is actually locked by
another task then this silently does nothing.

© 2018 Micro-Robotics Ltd

Locking 107

This scheme is called restorative locking.

Non-Blocking Locking

With the Lock message, you have the risk that atask cannot lock an object immediately, and
thus your task may have to wait (or be blocked) for an indeterminate time.

If this is not acceptable you can use the Test Lock message. Thistriesto lock the object. If it
succeeds then the object islocked and Test Lock returns the new level of locking (whichis
non-zero). If it fails (because another task already owns the object) then Test Lock returns

Zexo.
If the task does manage to lock the object, then it may be unlocked with Unl ock.
To proc
If obj . TestLock ; Try for the | ock...
[
obj . .. ; Use the object
obj . Unl ock ;restore old | ock | evel.
]
End

To fit in with the restored locking scheme described above, TestLock returns the number of
times the object has been locked. The example below shows how to use it.

To proc
Local |ock state

:record | ock | evel
| ock_state := obj . TestLock

;Did we get the | ock?
If lock state

[

obj . .. ; Use the object
;restore old | ock |evel:
obj . Lock := lock state - 1

]
End

Notice we had to subtract 1 fromthe lock level to restore the lock, as TestLock returns the
post-locking level, as zero is used as the return value for failure to secure the lock.

© 2018 Micro-Robotics Ltd

108

Part 1:Venom Language Tutorial

Lock Owner

Occasionally, most likely during development, it may be useful to find out which task has an
object locked. The Owner message on any object will return the task-object that has object
locked, or NIL if the object is not locked.

Deadlock
Deadlock is the 'fatal’ tangling of tasks and locks illustrated by the following example:
InTask 1:

Obj A . Lock

aoj B . Lock
InTask 2:

Obj B . Lock

a)j A . Lock

If these bits of code are executed at roughly at the same time, then it's possible that Task 1 will
lock objA and Task 2 will lock objB. Fromthen on both tasks are stalled forever, as neither
can ever lock the other object it needs, nor unlock the object the other task needs.

Deadlock will only show as an intermittent problem, so it's important to eliminate it at the
software design stage.

If you construct your code correctly then deadlock can never happen. The trick is to meke sure
that any resources that are locked at the same time by a number of tasks are always locked in
the same sequence in each task:

InTask 1:
hj A . Lock
hj B . Lock
InTask 2:
hj A . Lock
Obj B . Lock
Task listing

Y ou can see if deadlock has occurred by examining a task listing - it will show any blocked
tasks. Deadlock is where two or more tasks are mutually blocking each other. Here task O is
blocked by task 1 and task 1 is blocked by task O - so neither can proceed.

© 2018 Micro-Robotics Ltd

Locking 109

Task ID: O

Bl ocked by Task 1

in procl (working.vnmline 87)
in the command |i ne.

Task ID: 2

Bl ocked by Task O

in b.Lock

in proc2 (working.vnmlines 88-89)

in a task started fromprocl (working.vnmline 86).

Implicit locking may be important

Remember to consider implicit locking when you are thinking about deadlock.

Ending Tasks
In general it makes a mutitasking program simpler to think abot if the tasks you use never end.

One of the complications of ending a task (one of the reasons it's eadier if tasks never end) is that
it is often necessary to clean up the resources that the task has used. This means removing any
temporary objects it has created and unlocking any objects it has locked.

Another complication is that if a task ends thenit's likely that you will need to start another one at
some point, to perform the same function. Usually you will have to find some way of being sure
the old task has really ended before you try to start the new ore.

However it is sometimes useful to have tasks that end.
There are three different ways to end a task:

1. Letit end naturaly

2. Signal to it to end from an external signal

3. Stop it from another task
We will consider all three below.

Let a task end naturally

This means the code just comes to a natural end after completing its job. Tasks that end naturally
are the easiest to clean up after. You just write them as if they are normal bits of code (which
also have to clean up after themselves).

Consider the procedure below, which we start as a task.

© 2018 Micro-Robotics Ltd

110 Part 1:Venom Language Tutorial

To task_1
Aut oDest r uct
Local str := New String(100)

Serial . Lock
do_sonething with(str, serial)
Seri al . UnLock

End

Start task_ 1

Notice that AutoDestruct is used to clean up the temporary String object, and that though we
lock serial, it is always unlocked before the task ends.

Signal a task to end
If atask would not end naturally - e.g. it usually runsinloop - then you can signal to it to end.

Consider the procedure/task below. Again, we use AutoDestruct to remove the temporary
object, and the Unlock is aways performed before the task ends.
To task_1

Aut oDest r uct
Local str := New String(100)

Seri al . Lock

Every 100
[

do_sonething _with(str, serial)
If task_stop_signal
Br eak

]

Seri al . UnLock
End

Stop atask from another task

When atask is stopped using St op or St op Al |, the task has no control over the poirt at
which it stops executing. Thisis very crude - it's a bit like a runtime error. It could leave objects
controlled by the task in any state. Infact, St op is processed just like a runtime error. Which
means that you can trap the error using Tr y, and attempt to clean up.

Condgder the code below.

© 2018 Micro-Robotics Ltd

Locking 111

#Def i ne TASK_STOP_ERROR 32

To task 1
Local err
Aut oDest r uct
Local str := New String(2100)

Try
[
Every 100

[

Seri al . Lock
do_sonething with(str, serial)
Seri al . Unl ock
]
]

put 10 .in_safe _state
Serial.Lock(0) ; Unlock fully
End

Here we've used Try/Catch to catch the task stop 'error'. Again, we can use AutoDestruct to
remove any temporary objects at the end of the procedure/task.

But because we can't tell exactly where the task was interrupted, we can't know the 'lock state'
of any objects we may have locked (explicitly or implicitly in Print, say). Luckily we can use the
Restorative Locking scheme to make sure that an object is fully unlocked.

But also you may also have to make sure that any 1/0 you were controlling, or other systems,
are put into a safe state before the task finally dies.

Critical Areas

Sometimes you will need to lock awhole area of code, not just access to asingle object. An
example of this was given above:

count := count + 1 ;in task A

count := count - 1 ;in task B

To control access to areas of code you can use an object just for itslock. The object to useisa
Semaphore as this is intended for this job:

© 2018 Micro-Robotics Ltd

112 Part 1:Venom Language Tutorial

Make code | ock Semaphore

code_lock . Lock
count := count + 1 ;critical area in task A
code lock . Unlock

code_lock . Lock
count := count - 1 ;critical area in task B
code_l| ock . Unl ock

Semaphores

The Semaphore object is more than just alock - though it's likely it will be used mostly just for
its lock.

However, it dso implements the classic semaphor e function for resource allocation. It's not
likely you will need to use this, but you can read more about its detailed functioning in the
Venom?2 Help File, and about the use of semaphores in computing in many online resources.

Internal Operation

Here are some further details of the internal operation of the Venom Task Manager. Y ou should
not need to understand these for most purposes.

Sharing highly contended resources

The venom task manager attempts to share access to highly contended resources in afair
manner.

Say there are three tasks all needing frequent access to a highly contended resource suchasa
file system or network connection.

All three tasks claim the resource by locking it, then use it for atime, and then release it for use
by other tasks by unlocking it.

It is possible in this scenario for any one of the tasks to 'hog' the resource through accidents of
timing.

Say atask claims the resource, then releases it for a while before quickly claiming it again, as in
the code below:

© 2018 Micro-Robotics Ltd

Locking 113

To SendPacket s
For ever

[

net wor k. Lock
Net wor k. Put (packet)
net wor k. Unl ock

]
End

Start SendPackets

If there is no task swap in the time between the network being unlocked and then locked again,
the other tasks will never get to lock the network - which is quite likely in this code because the
lock is executed again only a few instructions after the unlock.

To get around this problem, if a task has a resource locked, and another task also tries to lock it,
the Venom task manager will set a flag in the lock (called ‘task waiting). When the owner task
releases the lock, if the task waiting flag is set then the task is forced to swap immediately, so
preventing it from locking the resource again before other tasks have had a chance to use it.

Dead tasks holding locks

When atask comes to an end, or is stopped by another task, if you haven't coded the task well
it may be holding one or more global objectsin alocked state.

If atask dies leaving an object locked, and then another task tries to lock the object, then after a
short time (less than N tasks x 512mS) the task/lock manager will detect that the live task is
waiting to lock an object that can never be unlocked because its owner doesn't exist anymore.
At this point it will silently unlock the object so other tasks may claimit - your program may
seemto dow down for a fraction of a second. Though this doesn't usually cause a magjor
problemit is much better to ensure that a task cleans up after itself.

It is also possible to have the systemissue a runtime error (Attempt to lock object held by
dead task) so you candetect this Situation arising during development. See OperatingSystem.
Debug in the Venom?2 Help File.

Removing objects that other tasks are trying to use

When Die is sent to an object with a lock, if any other tasks were waiting to lock the object then
these are allowed to lock it. When they are finished with the object it is then removed fromthe
system

If there is any attempt to use the object after this then the runtime error Message to dead obj ect
IS issued.

© 2018 Micro-Robotics Ltd

114 Part 1:Venom Language Tutorial

The End

This is the end of the Venom2 Language Tutorial - you have been introduced to all the major
parts of the VVenom language.

If you haven't already done so, we recommend that you now look through the second part of
this manual (Part 2: Object Tutorial) and get familiar with objects by using them.

Then you will be ready to start writing your own application for VM2. There is a checklist for
how to plan and complete your application in Appendix A: Development Checklist.

© 2018 Micro-Robotics Ltd

115

Part 2:0bject Tutorial

Most of the work in atypical Venom application is done by Objects. Objects come in many
different types. Different types of object respond to different messages to perform different
functions. The first part of this tutorial used several types of object in the code exarmples.

The second part of the tutorial is a more intensive exploration of some of the more commonly
used objects. They are grouped according to the kind of functions they perform: Input/OutpLt,
User interface, Data storage, Operating system...

The principals illustrated using these objects may be extended to cover al the other objects in
Venom2.

For a complete description of every type of object see the Venom2 Help File.

A note to those familiar with C++, Java, etc:

The Venom system predefines many useful types of object. These have been written and
tested by Micro-Robotics Ltd, and are supplied as part of the Venom language. This set of
object types was created to handle the functions most commonly required in small to
medium sized industrial control systems.

It ispossible to create new object classes, though it'slikely that these will be used more
for data processing than low level device drivers, asthey are written in Venom which is
not well suited to this purpose.

We are happy to consider suggestions for new pre-defined obj ects.

Hardware dependence

Most of the objects in the Venom library interface with real input or output devices of one kind
or another. Where possible this manual will not assume any particular hardware set-up.

Venom Channels

Before we go any further it's worth talking about Channels in Venom. A channel isa single
Input/Output pininyour hardware system that has been given a number. Thisis purely a
convenient way for Venomto refer to specific bits of hardware; it doesn't necessarily
correspond to any numbers given to pins by the manufacturers of the 1Cs concerned.

For example, digital 1/0 channels on the main 12C bus are numbered from 128 to 255. Digital 1/
Os coming directly off the microcontroller are numbered from $10 upwards; the datasheet for
the VM2 and the Application board have details of these.

Analogue inputs and outputs have a similar channel numbering. Where possible the channel
numbers are detailed in this manual. If they are hardware- specific see the datasheet for your
controller.

© 2018 Micro-Robotics Ltd

116

Part 2:0Object Tutorial

Some analogue devices supported by Venom?2 don't use channel numbers - these will be

described individually.

© 2018 Micro-Robotics Ltd

Digital | 117

Digital
The Digital object type is designed for reading and writing digital input and output. 1t doesn't
matter whether the 1/0 is located on the controller itself, on an 1C connected to an 12C bus—
Digital will handle them all.

Creating Digital objects
The following three lines create Digital objects.

Make VM2 _ip Digital ($2E, 0)
Make VM2 _op Digital ($2F, 1)
Make i2c_dig Digital (128)

The first two lines create digital input and digital output objects to control 1/0 pins onthe VM2
cortroller.

The first parameter is the channel number on the VM 2, and the second parameter gives the
attributes of the digital channel - in this case just telling it to be a standard input or output.

The third line creates a digital object on a chip attached to the I2C bus. This doesn't need to be
assigned input or output functiondlity as it can handle both implicitly.

Setting outputs

Now we can send messages to the objects to control them:

VM2_op. On ;Turn it ON
VM2_op. O f ; Turn it OFF

Reading inputs
Y ou can read the state of an input or an output with the Asserted message:

-->Print VM2_ip.Asserted, CR
1
- >
The 1 (True) means the input was asserted - or ON. I it had been OFF then O would have
been returned. There is no single standard for whether logic low and high mean on and off — it
depends on the device you are dealing with. However it is most common for ICstto treat low as
on.

Digitals on the direct VM2 channels may be defined with ON being high or low voltage.

Asserted may also be used to set the state of a digital output:

© 2018 Micro-Robotics Ltd

118 Part 2:0Object Tutorial

VM2_op. Asserted : = True

Printing
Digital objects print 'ON ' or 'OFF' depending on their state (always 3 characters).

Other messages

There are some other messages that Digitals understand like Toggl e, which inverts the state of
anoutput, and Pul se, which pulses the output.

Digital channel numbering

Channel numbers for digital channels on the controller itself are detailed in the controller's
datasheet. They lie in the range $10 (16) to $7F (128).

Digital 1/0 channels on an 12C bus (using the PCF8574 1C) have well-defined channel numbers.
These are listed in the table below.

Each PCF8574 will provide eighnt digital channels.
There are two types of PCF8574: the normal part and the A-suffix part PCF8574A.

These are identical except for the 12C address each respondsto. Venom alocates different
channel ranges to each type, and deals with the addressing transparently.

For example, a PCF8574 chip, connected to the main 12C bus (number 1), with it's address
lines set to 000 (Low Low Low) will have digital channels 128 to 135. If the address were
changed to 001 (Low Low High) then it would have digital channels 136 to 143.

Some other objects (Keypad, AlphalLCD) use these digital channel numbers as an easy
reference to a particuar PCF8574 they are using.

© 2018 Micro-Robotics Ltd

Digital

I2C Device |[Address |Channel Channel
inputs: Numbers Numbers
A2 A1 AO 12C Bus 1 12C Bus 2
PCF8574 000 128 - 135 384 - 391
PCF8574 001 136 - 143 392 - 399
PCF8574 010 144 - 151 400 - 407
PCF8574 011 152 - 159 408 - 415
PCF8574 100 160 - 167 416 - 423
PCF8574 101 168 - 175 424 - 431
PCF8574 110 176 - 183 432 - 439
PCF8574 111 184 - 191 440 - 447
PCF8574A 000 192 - 199 448 - 455
PCF8574A | 001 200 - 207 456 - 463
PCF8574A 010 208 - 215 464 - 471
PCF8574A 011 216 - 223 472 - 479
PCF8574A 100 224 - 231 480 - 487
PCF8574A |101 232 - 239 488 - 495
PCF8574A 110 240 - 247 496 - 503
PCF8574A 111 248 - 255 504 - 511

Similar Object Types
For pulsed digital signals see PulseCounter, PulseWidthOut, PulseWidthin, and Shaft.

119

© 2018 Micro-Robotics Ltd

120 Part 2:0Object Tutorial

Analogue

The Analogue object type is designed for reading and writing analogue input and output. It
doesn't metter whether the 1/0 port is located on the controller itself, on an 1C connected to an
12C bus— Analogue will handle it.

Input

The following two lines of code make two analogue inputs:
Make an_1 anal ogue ($30) ; anal ogue i nput on the VM2
Make an_2 anal ogue (256) ; anal ogue i nput on |2C bus

To read the input use the Value message:

Print an_1.Value, CR
173
-->

The number returned is an integer read from the Analogue to Digital Converter device (ADC).
This represents the voltage applied to the actual input. 1n this case we will assume that the ADC
has 12-bit resolution (i.e. a full scale from 0 — 4095 comprising 4096 steps) and that full scale is
3.3 Volts. Thusthe reading in volts would be

-->Print an_1.Value * 3.3/ 4096 , CR

0. 844727
-->

Analogue channel numbering

Channel numbers for analogue 1/0 on the controller itself are detailed in the controller's
datasheet.

For analogue 1/0 onthe 12C bus, see the table below.

Channel |l or O |2C Device| Addresses | |2Cbus

256 - 287 | Input PCF8591 (000-111 (1

288-295 |Output [PCF8591 (000-111 (1

512 - 543 | Input PCF8591 (000-111 (2

544 - 551 |Output [PCF8591 (000-111 (2

© 2018 Micro-Robotics Ltd

Analogue 121

Accuracy and Resolution

The resolution of an analogue 1/0 device is not the same as its accuracy. The resolution limits
the size of the smallest signal you can measure.

The overall accuracy is limited by the resolution, but also by many other parameters of the ADC
or DAC. Theseinclude the device's offset error, full-scale error, linearity, temperature drift,
input or output impedance, etc.

The resolution is sometimes expressed as bits - e.g. 12 bits. Or it may be expressed asthe size
of the LSBs - the smallest ananlogue signal that may be detected or generated.

If you need a measurement error smaller than 10 LSBs, in general you will need to use the
device's data sheet and add up the sources of error.

Output

Some channels can be analogue outputs:
Make an_out Anal ogue ($14) ;anal ogue I and O on the VM2

Writing to the output is done with VValue yet again:

an_out.Value := 4095 Div 2 ; set the output at half the supply
rail

You can also play audio files using an analogue output - see Analogue in the Venom2 Help
File.

Similar Object Types

Analogue values can also be represented in microcortroller systems using pulsed 1/0.
See Pul seCount er, Pul seW dt hQut, Pul seW dt hl n, Fr equencyl n, and Shaf t .

© 2018 Micro-Robotics Ltd

122 Part 2:0Object Tutorial

AlphalL.CD

The Alphal.CD object can drive any aphanumeric LCD display that is controlled by the Hitachi
HD44780 controller IC.

There are usually several ways to attach alphanumeric LCDs to your systent usually directly to
the controller board, and also using a PCF8574 IC onan 12C bus. Y ou can have as many
LCDs as you like, though most applications will only need one.

The make command specifies the number of characters across the display, the number of lines
on the display and the 'location), i.e. how you have connected it to the system

Make | cd Al phalLCD (20 , 2, 0)

This command initialises a 20 character by 2 line LCD attached directly to the VM2's parallel
bus.

To print text to the display, use Print To.
Print To |lcd, “sone text”

The text will appear on the top line of the display starting at the left hand end.
Alphal. CD understands several Print keywords to modify the printed output:

Keyword Action

CLS Clears the display, setting the cursor to the top
left

HOME Puts the cursor at the top left

GOTOXY (X,Y) Sets the cursor to the X — Y position specified

CR Does a carriage return

GOTOXY takes two parameters in parenthesis. Remember to specify X (characters along the
row) first. Note that the character positions and the lines are numbered from zero.

CR will move the cursor from one line down to the start of the next. If the cursor isonthe
bottom line, then the text on all the lines will scroll up, and the cursor will remain on the bottom
line.

© 2018 Micro-Robotics Ltd

AlphalLCD| 123

Location numbers

The table gives the location numbers to use for the different ways to connect LCDs.

Location Number

VM2 pardld bus 0

PCF8574 onthe 12C bus| Use one of the channel numbers as the location,
e.g. 128.

Similar Object Types
See Gr aphi csLCDinthe Venom2 Help File, for a more sophisticated user interface.

© 2018 Micro-Robotics Ltd

124

Part 2:0Object Tutorial

Keypad
The Keypad object class will drive several types of keypad.

Each type has been given a number. Most of the keypad circuits use one or two PCF8574 I1Cs
onthe 12C bus, which further drive meatrix keypads of different sizes and shapes. However, you
can also use a Touchscreen as a keypad - thisis covered in the Venom2 Help Fileand in
example code on our website.

The table below shows the type numbers to use for the different types of keypad.

M atrix Keypad PCF8574 Devices | Type Number
4dby4 1 needed 0
8by 8 2 needed 1
12by 4 2 needed 2

Y ou can use these drivers to drive smaller keypads, for example at 4 x 4 driver candrive a3 x 2
matrix.

The Make command for K eypad takes the type number, and then either one or two channel
numbers, each of which specify a PCF8574 onthe I12C bus.

An easy way to find out the channel numbers of any PCF8574s on an 12C Busis to print the
I2CBus object:

-->print net
Devices on the | 2C network No. 1:

Nunber Channel s Devi ce Descri ption
124 240- 247 PCF8574A 8 digital I/O1lines
126 248- 255 PCF8574A 8 digital I/O1lines
162 PCF8582/ 83. . . RTC/ EEPROM . .

-->

Here we can see that we have two PCF8574As onthe 12C bus. We'll use both to make the
keypad...

Make kpd Keypad (1 , 240 , 248)

This will drive an 8 by 8 keypad on two '8574A chips, onthe |2C bus, near the top of the
PCF8574A address range.

© 2018 Micro-Robotics Ltd

Keypad 125

Getting Key presses

There are several ways to read the keypad. The simplest, but least flexible, uses the message
Get:

-->Print kpd.Get, CR
5
-->

Here the key decoded as'5' was pressed (key numbers aways start from 0).
See the Venonm2 Help File for how the keys are numbered on the matrix.

Get will de-bounce the keypad, and make sure that a long key-pressiis treated as only one
action, by waiting for no keys to be pressed before it can look for a new key-press.

The disadvantage of using Get is that while no key is pressed, the message will wait, blocking the
execution of any other code in the current task.

Another way to read K eypad that does not wait is to use the Asserted and GetLast messages:

Every 50

[
I f kpd. Asserted

[
Sel ect Case kpd. GetlLast , CR

Case O
[...]
Case 1
[...]

;etc.

Wil e kpd. Asserted ; 'De-bounce' the keypad
Wait 30

]
]

This code will wait for a key-pressto be detected. Asserted scans the keypad and returns True
if any key is pressed. GetLast reports the particular key found by Asserted.

The last line of text in the code example is used to make sure that the code only acts on
individual key presses by waiting while the key is still being pressed. This line does cause code
execution to halt if a key is held down, which might be a problem in some applications. There
are ways around this, but it may be better to use a Keypad InputBuffer instead - which we deal
with next.

© 2018 Micro-Robotics Ltd

126 Part 2:0Object Tutorial

Keypad InputBuffer

A Keypad InputBuffer is used to collect discrete key presses and buffer them up so that you can
use them at a rate that suits you.

It is neater than using Get or Asserted/GetLast in many circumstances.

To turn on the Keypad's InputBuffer, use the following:
kpd. I nput Buffer (10 , 25)

The parameters supplied are the auto-repeat rate and auto-repeat-delay for the keys.
Y ou may omit these parameters if auto-repeat is not required.

Updating

K eypads with I nputBuffers have to be 'updated’ in order to do their work. This is achieved by
sending the message Update to the Keypad. Update has to be sent both often and regularly for
the InputBuffer to work well: every 30mS seems to be a good rate.

A typical use of a Keypad with an I nputBuffer in a user interface might be

Every 30

[
kpd. Updat e
key press := kpd. Key ; Key pressed?
I f key_press >= 0

[
sel ect the action for each key.
Sel ect Case key press
Case 0[]
Case 1[]
Case El se[]

; Update the display if necessary
updat e_di spl ay
]
]

Another way to update the Keypad isto start atask that calls Update regularly. Update has
been written so that you don't have to worry about resource sharing.

© 2018 Micro-Robotics Ltd

Keypad

Start Every 30 kpd. Update
For ever
[
key press := kpd.Get ; Wait for key to be pressed

sel ect the action for each key.
Sel ect Case key press

Case 0[]

Case 1[]

Case Else[]

; Update the display if necessary
updat e_di spl ay

127

© 2018 Micro-Robotics Ltd

128

Part 2:0Object Tutorial

NumberReader

NumberReader alows you to set up a keypad to enter numbers into your application calculator-
style. Youtell it which keys represent the digits 0-9; minus sign, decimal point and so on, and it
will assemble numeric input for you.

For visual feedback the digits of the number may be displayed on a display device (e.g. an LCD)
while the number is being entered.

Creation
Make nr Nunber Reader

Y ou don't have to supply any parameters if you warnt to use it for decimal numbers.

Conversion

The Conversion message tells the NumberReader which keys on your K eypad to use for its
functions.

Since different keypads have different mappings between the idertifiers on the faces of the keys
and the logical key numbers, we need a way to specify to the NumberReader which keys are to
be used for which purpose. The Conversion message does this.

(Thelogical key number is the number returned by Keypad. Key, etc, when you press a key.
On a4 x 4 matrix the logical key numbers range fromO - 15.)

Example

Here is an example of the use of Conversion. Note how the Delete function is disabled by being
assigned to key *-1":

#define Delete KEY -1
#def i ne DECI MAL_KEY 3
#define M NUS_KEY 12
nr. Conversion ;Assign functions to keys on the keypad.
(
DECI MAL_KEY,
M NUS_KEY,
Del et e KEY,
;Digits 0-9 on these keys:
13,0,1,2,4,5,6,8,9, 10

© 2018 Micro-Robotics Ltd

NumberReader 129

The first three parameters are the key numbers for the DECIMAL POINT, MINUS, and Delete
functions.

1. MINUSIs for entering negative numbers

2. DECIMAL isfor entering a decimal point

3. Delete will delete the number you have entered one character at a time
The rest of the parameters are the logical key numbers for the decimal digit keys.

Redefining the keypad
Conver si on may be re-sent at any time to change the functions of the keys.

The keypad

This conversion list above has been created for the this keypad:

Logi cal Key nunbers:
0 1 2 3

4 5 6 7

8 9 10 11
12 13 14 15

; Tile face | egends:
1 2 3 F
;4 5 6 E
7 8 9 D
A 0 B C
: Functi ons:
;o1 2 3 "Float' (dec point).
4 5 6 Ent er
7 8 9 Del et e
Do 0 B Cancel

Reading Numbers

In the example below, we send key presses to the NumberReader as they come in. Every time
we get a key we print the NumberReader to the LCD so the operator can see what's going on.

We only stop assenmbling characters when we get the ENTER key.

© 2018 Micro-Robotics Ltd

130 Part 2:0Object Tutorial

#define ENTER_KEY 7
#defi ne CANCEL_KEY 15

To get _nunber
Local k
For ever

[

Print To nr, 100 ; we can set a default val ue
nr.reset
For ever

[
Print To | cd, HOVE, nr ; visible feedback

k := kpd. Get . get a key press
Sel ect Case k ; decide what to do with it
Case ENTER KEY
Br eak ; exit | oop

Case CANCEL_KEY
Print To nr, O ; reset nunber to O

Case El se
nr. Put (k) ; give key press to Nunber Reader
]
Print nr.Value , CR ; Print the value we got

]
End

Y ou can use Keypad's | nputBuffer.K ey to get keys if you don't want your code to wait for keys
inside Get.

Default Value

If you want the NumberReader to hold a default value at the start of number entry (to prompt a
user to accept a default, say) then you can print to the NumberReader.

More
NumberReader has more features than we list here. Please see the Venonm2 Help File.

© 2018 Micro-Robotics Ltd

OnBoardLED 131

OnBoardLED

The OnBoardLED object is used to control the LED on the controller board. The LED output
IS brought out on a connector pin so you can connect your own LED to it if the controller is not
visible.

The behaviour of the LED at reset is determined by the Venom operating system:

* When the controller is waiting at the Clear Memory prompt in Program Mode, the LED
is lit continuously.

* Whenthe controller isin Run Mode the LED flashes at around once per second.

With this default behaviour, if the LED is unlit, then you can assume there is no power, or the
controller is damaged. If the LED is lit continuously then the controller has been left in Program
ModeMODE.

As soon as Venom starts running your code you can exert control over the LED. 1n genera you
should use the LED to signal the status of your application, in keeping with the default behaviour
listed above. If the defauit behaviour is sufficient then you need not change it.

Messages

The LED behaves rather like a Digital object and will obey many of the same messages: On, Off,
Asserted, Print and so on.

Flashing

The LED can be made to flash:
| ed. Fl ash($80)

The flash pattern is given by the binary bit pattern of the parameter. (There are two exceptions. 0
means turn the LED off, 1 means turn it on constartly).

Everywhere thereis a 1 in the binary representation of the pattern, the LED is turned on for
~1/8th of a second (actually 128mS), else it is turned off for the same time. The patternis
examined fromright - and ends when there are no more 1 bits to the left.

Example patterns are given below - but you can create your own.

© 2018 Micro-Robotics Ltd

132

Part 2:0Object Tutorial

Patternin Pattern in binary Description
hexadecimal
$80 %4.0000000 Short flash approximeately once a
secord
$A0 %4.0100000 Two short flashes approximately once
asecond
$A8 910101000 Three short flashes approximately
once a second
$A9DDCA80 % Signals "SOS" in Morse Code
1010100111011101110010101
0000000
$3AE77700 % Signals "OK" in Morse Code

0011101011100111011101110
0000000

© 2018 Micro-Robotics Ltd

String Objects 133

String Objects
We dealt with string constants earlier in this tutorial.
String constants are fixed strings of text. They always appear within double quotes, for exanple:

"This is a string constant™
Y ou can create a variable that refersto a string constart:

str := "This is a string constant"”

And you can re-assign the variable -

str := "new string"

But al you have done here is to point str at the first string constant, and later poirt it at the
second string constant. The contents of the string constants is exactly the same throughout - they
can not change unless you re-write the procedure or array in which they appear.

Variable text

String objects are smilar to string constants, but you can change the text they contain. They are
useful for manipulating text, or for creating variable text as the program runs.

String objects are created with Make or New - as with any object.
stro := New String(100)

When you create one you have to supply the maximum size of the text it isto hold - known as
the capacity of the String. It can't hold any more text than this, though it can hold less.

When it isfirst created, a string object is empty - it contains no text.

Y ou can use Print or Put to put text init:

-->Print To stro, "Sone text"
-->stro. Put("Sone nore text")
-->Print stro

Some textSone nore text-->

Structure

The diagram below shows the structure of a string object.

Each of the boxes represents a single character in the string - suchas'A'.
New text is added using Print or Put at the Write Point.

© 2018 Micro-Robotics Ltd

134

Part 2:0Object Tutorial

Capacity -
Length

i Cueue

UL
s — P

The string has a length - which you can read using the Length message. This is the number of
characters in the text.

It also has other properties that are available to read or write using other messages.

CGet - getsone character from the ReadPoint and moves the ReadPoint forwards one character.
Queue - the number of characters left to Get

Fr ee - the amount of empty space left in which to append more text in the string.

1 Bbhewrllen

e
'

! 1

! 1

: 1

'

L

:

El ement (or. ()) - read or write any character in the string.

More printing

Y ou can use colon format specifiers to print just a portion of the text within a String. 1f you use
one colon, then you can print the left-most or right-most characters. Using two colons alow any
segment of the buffer to be printed. This works in exactly the same way as printing string
constants.

-->Repeat 5 Print stro: IndexO : 5,cr
Initi
nitia
itial
tial
ial t

© 2018 Micro-Robotics Ltd

String Objects 135

Finding text

Y ou can find the location of any sub-string in a String using the Find message.

-->position := stro.Find ("XXX")
-->Print position
5-->
If the search string is not found then Find returns the value —1.

Y ou can specify where the search is to start using an optional second parameter to Find.
position := stro.Find ("XXX" , start_pos)

The searchis carried out from the start position towards the end of the String.
Find can also use another String object or atext buffer as the search text.

© 2018 Micro-Robotics Ltd

136

Part 2:0Object Tutorial

Buffer

A Bulffer is a general data-storage object. Buffers are able to hold a collection of values, as
opposed to the single values held by variables.

Buffers may be used to log data; hold varying amounts of data; form first-in-first-out (FIFO)
gueues, form'circular buffers and so on.

Diagram

The diagram below may make the operation of the buffer easier to envisage.

Data is written into a buffer at the write-point. When data is written, the buffer grows to the right
of the diagram.

Dataisread at the read-point. After each read, the read- point is moved one space to the right.
The data that has been read out is not deleted; the read-point just moves on.

The read-point may be repositioned to any poirt in the buffer. Also, each 'element’ of a buffer
may be read or written-to 'randomly’. Any particular element may be accessed in any order.

' Length

' Quels

HﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂHHHHD"%

Sfarf ReadF’omt Wiite Point

_ : 'Elliﬂ '.'.'rlm

Data types

Buffers can hold many different types of data. They can hold 8,16 and 32 bit integers, floating
point numbers and also text. Buffers that hold text are referred to as 'text buffers, and
sometimes operate in a different way to 'numeric buffers.

Most buffers can only hold one type of data; in general you can't mix data types in a single
buffer.

To create a buffer, you need to indicate the data it is to hold:

© 2018 Micro-Robotics Ltd

Buffer 137

Make b8 Buffer(lnt 8) ;holds 8-bit integer data
Make bl1l6 Buffer(Int 16) ;holds 16-bit integer data
Make b32 Buffer(Int) ;holds 32-bit integer data
Make bf Buffer(Float) ;holds floating point data
Make bt Buffer(Char) ;holds text

Buffer of Any

However there is one buffer that can hold any type of data. We refer to it as a Buffer of Any.
Make ba Buffer(Any) ;Buffer of Any

It can hold integers, floating point numbers, object references, and pointers to anything.
Additionally, the type in each element can be different in the same Buffer.
The disadvantage is thet it uses 8 bytes for each element stored.

Buffer of any may be used to build up complex data structures - e.g. arrays of string objects, or
arrays of procedure pointers or user Class objects.

Filling a buffer

To put data into a buffer, you can use the message Put. This line puts five consecutive integers
into the buffer, i.e. 3,4, 5, 6 and 7.

Repeat 5 b8. Put (index0 + 3)

Printing a buffer
Y ou can print a buffer to find out what'sinit:

-->Print b8
3

4
5
6
7

-->
Printing a buffer lists out it's numerical contents in a colunn. 1f you use colon formetting then the
formet is applied to each element asiit is printed.

Reading a buffer

To read data out of the buffer you can use the message Get
-->Repeat 3 Print b8. Cet
3 4 5-->
Each Get reads the next data itemin the buffer, starting from the beginning. Get does not
remove items from the buffer, it just reads them in sequence. |If you attempt to read past the
write-point of a buffer (i.e. read data that isn't there) a runtime error will occur.

© 2018 Micro-Robotics Ltd

138

Part 2:0Object Tutorial

Flushing a buffer

Y ou can remove the data that has been read by using the Flush message:

-->p8. fl ush
-->Print b8
6
7
-->
Here, the elements between the start and the current read-point have been removed,
leaving the unread elements in the buffer.

Other Buffer messages

A Buffer may accept several other messages. These are listed below.

M essage Action

Lengt h Returns the total number of data items in the buffer

Queue Returns the number of data items available to be read with Get

ReadPoi nt | Sets or returns the position of the read-point

Reset Resets the read-point back to the start of the buffer

Empty Removes all the data from a buffer

El ement | Accesses a single element of the buffer - see below
(n) or
(n)

Get Last This removes an element from the end of the buffer - so you can
implement FILO, or stack-like structures.

Renove() | This removes a section of data from any point in the buffer: start,
middle or end.

See the Venom?2 Help File for details of all Buffer messages

Element
The Element message may be used to access any element of the buffer.
As Element is guite a long but frequently used message in Venom, an abbreviation may be used:

b8. El enent (n) isequivalent to b8. (n), i.e. you canjust leave the message name out if
the parentheses are there.

© 2018 Micro-Robotics Ltd

Buffer 139

Here we look at the zeroth element of the buffer, then change it's value.
-->Print b8.(0)

6-->
-->p8.(0):= 10
-->Print b8.(0)

10-->

If you attempt to access an element that doesn't exist, a runtime error will occur.

How big can a buffer get?
There is no limit to the size of a buffer apart from the memory it takes.

A buffer takes as much RAM asit needs to hold its data. Of course this means it's possible for
a buffer to use the entire RAM available. 1n this case Venom will issue the runtime error Ram
Full.

Buffers take RAM in small blocks, so that they don't rely on the memory manager having large
blocks of contiguous memory available.

If you need to keep an eye on how much RAM is available in your controller, then you can use
the system message Free.

-->Print Free
98276- - >

This returns the number of bytes left inthe 'heap'.

Text Buffers

Text buffers are sufficiently different to numeric buffers to warrant discussing separately. Text
buffers do all the things mentioned above in the same way as numeric buffers, apart from Prirt.
They also do many things that numeric buffers don't do.

This is how you create a text buffer:

Make tb Buffer(Char)
or

tb := New Buffer(Char)

A text buffer is smilar to a numeric buffer with 8-bit integer elements. Y ou can put and get 8-bit
values, but these values are treated as ASCII when performing textual operations.

A text buffer is also smilar to a String object.

Text buffers are more efficient than String objects in some situations, and less efficient in others.
The main difference is that text buffers don't have a fixed capacity - instead they use chains of
memory blocks to store the text. They tend to be used for larger amounts of text.

© 2018 Micro-Robotics Ltd

140

Part 2:0Object Tutorial

Printing to and from a Text Buffer

When you print a text buffer it prints out the text it holds. However, if you want to see anything,
first you must put some text init. One way to do thisis to print to it:

-->Make tb Buffer(Char)
-->Print To tb , "Initial text"
-->Print tb

This is sone text-->

When you print to atext buffer, the new text is appended on to any existing text in the buffer:

-->Print To tb, "nore text"
-->Print tb
Initial textMre text-->

Selecting what to print

Y ou can use colon format specifiers to print just a portion of the text within atext buffer. If you
use one colon, then you can print the left-most or right-most characters. Using two colons allow
any segment of the buffer to be printed. This works in exactly the same way as printing string
constants.

-->Repeat 5 Print tbh: Index0 : 5,cr
[niti
nitia
itial
tial
ial t
As with strings, you can aso implement scrolling text with this feature.

Inserting text

As well as appending text to the end of atext buffer, you can also insert text anywhere withina
text buffer using the message Insert.

-->Print tb

Initial textnmore text-->
-->tb. I nsert (" XXX", 5)

--> Print tb

[niti XXXal textnore text-->

Y ou can also insert the contents of a text buffer into another text buffer.

© 2018 Micro-Robotics Ltd

Buffer 141

Finding text
Y ou can find the location of any sub-string in atext buffer using the Find message.

-->position := th. Find (“XXX")
-->Print position
5-->
If the search string is not found then Find returns the value —1.

Y ou can specify where the search is to start using an optional second parameter to Find.
position :=th.Find ("XXX' , start_pos)

The searchis carried out from the start position towards the end of the buffer.
Find can aso use another text buffer as the search string.

© 2018 Micro-Robotics Ltd

142

Part 2:0Object Tutorial

Array

Array is a data storage object intended for the following uses:

Storing fixed-size tables of constant data in the ROM (or rather, the Flash memory)
Storing tables of variable datain RAM

Creating Constant Arrays

Because they hold data that is constant during an application, Arrays of constant data
arerather like procedures. They sit in your codefile, just like procedures.

The following code creates an Array of 10 8-bit integers.

ARRAY ar 8(1nt 8,10)
1,2,3,4,5,6,7,8,9,10
End

The parameter | nt 8 specifies that the Array will store 8-hit integers.

You can also create Arrays of 16 and 32 bit integers, floating point numbers, pointers, and string
constants. The following lines indicate how each of these should start.

ARRAY ar16(1nt 16, 10)
ARRAY ar32 (Int 32, 10)
ARRAY ar _fl oat (Fl oat, 10)
ARRAY ar ptr(@umry, 10)

ARRAY ar _str(String, 10)

Auto fill

When the contents of an Array are not fully defined, the un-specified elements are filled with the
last defined value.

Array of pointers

Inthe case of Arrays of pointers, the type is indicated by supplying any pointer. | have used a
dummy variable to make it clear that it doesn't matter what the pointer points to: you must use
the @symbol, but you can have any name you like.

© 2018 Micro-Robotics Ltd

Array 143

ARRAY ptrs (@unmy)
@ari abl el,

@ar 2
End

Array of strings

Arrays of string constants may not seem straightforward at first. Here's an example of their use.

-->ARRAY ar _str(String ,5)
02>"Karl”

03>"Cive”

04>"Del | &”

05>End

ARRAY Defined (69 bytes @ $26027A)

-->Print ar_str.(0)
Karl - ->

Each element of the Array is a string constant. This is very different to a text buffer, whichis
rather like an Array of characters.

Printing
Y ou can print the contents of an Array.

-->Print ar8
1 2 3 4 5 6 7 8 9 10-->

Y ou can read out the data using the Element message. ..

-->Print ar8.El ement (4)
5-->
or using the shorthand for Element: . ()
-->Print ar8.(4)
5-->
But you can't write to it.

RAM copies of Arrays
If you need to have an Array that you can write to, but thet is initialised with constant data, then
you can take a copy of a constant Array:

-->ar_copy := ar8. Copy
-->print ar_copy
1 2 3 4 5 6 7 8 9 10-->
Y ou can now write to the elementsin ar_copy, like this

Ar_copy.(0) := 2

© 2018 Micro-Robotics Ltd

144 Part 2:0Object Tutorial

There are other, more usual ways to create arrays you can write to...

Variable Arrays

Y ou can create Arrays of variable data that aren't copied from constant Array. This might be
useful if you need to create Arrays dynamically for temporary data storage. Or it might be
wasteful to use up ROM space with initialisation data this isn't needed.

The syntax is rather similar to the constant Array:

Make a Array (Int 8 , 10 ,1,2,3,4,5)
Or

a := New Array (Int 8, 10 ,1,2,3,4,5)
Here the type and size are Int 8 and 10, just like the constant Arrays. The rest of the numbers
are optional initialisers. Again, if there are fewer initialisers than Array elements then the last
initialiser is used to fill the rest of the space.

Unlike the constant Array syntax, you may use variables in the parameter list for Make or New
Array.

Because the initialisers are in the parameter lit, it's not a good idea to use many of them it will
put lots of data on the stack. 1f you need a large amount of initialising data, use the constant
Array syntax and take a copy.

© 2018 Micro-Robotics Ltd

RealTimeClock 145

RealTimeClock

RealTimeClock keeps track of the actual calendar date and time using the real time clock/
calendar module (RTC) built into the VM2.

This module will keep the correct time even when power is removed if the Lithium battery is
fitted and holds charge.

It is possible to calibrate the RTC to around 30 seconds per year drift, assuming constant
temperature. If the temperature is not constant then the time keeping will drift according to the
clock crystal's F/T curve.

It is possible to adjust the RTC calibration according to a measured temperature, though this is
unlikely to be worth the effort.

Creation

Make cl ock Real Ti med ock
This line will make the Real TimeClock, but there should be no need to type it asit is dready in
the default startup procedure.

Clock not set

If the clock has not been set (or has lost it's setting) then the Time message will report zero
seconds and the Valid message will return False.

Dividing up the time

Y ou may need to extract elements of the date for use in your application code, for example you
may wart to know if it's a Friday. RealTimeClock does not alow you to do this directly,
because of the problem of skewing — for example the seconds value might roll over from 59 to
00 between reading the seconds and the minutes.

Y ou should use a DateTime object to split up atime value into its date and time constituent parts:
year, month, day, hour, minute, second, and the day of the week.

Setting the Clock

Y ou can set the time in the clock by setting its Time. One way to do thisis to use a DateTime
object to find the number of seconds since 1990:

Make now Dat eTi ne
now. year := 2012
now. nont h: = 4

Clock. Time : = now. Ti ne

© 2018 Micro-Robotics Ltd

146

Part 2:0Object Tutorial

Printing to the clock

Y ou can also set the clock by printing to it, which may be easier on the command line:
-->Print to clock , "2012-4-6 9:48: 12"
Printing to the clock must obey these rules:
* |SO format isused: YYYY- MM DD HH: nm SS

* You have to provide all the elements of the date, but you can miss out the least
significant time elements, e.g. YYYY- M\t DD, or YYYY- MM DD HH: MM

® You can use any single non-numeric characters to separate the elements of the data and
time, e.g. YYYY/ MVF DD HH- nm SS

Printing the Date and Time
If you want to print the current date and time you can simply Print the Real TimeClock object. It
will print out it's current date and time in 1SO formet:

-->Print clock
2012-04-11 00: 02:12-->

Y ou can aso specify exactly which parts or the date or time you warnt to printed, how you want
to see each part formatted, by supplying a formet string that contains special codes to formeat
each part of the date or time.

For example you could use the following (note the use of the colon : to introduce the formeat
string)
Print clock:"h:mtt, ddo MMW yyyy"

This would result in a date presented in this formet:
3:15pm 11th April 2012

The table below has a list of the special date/time formet codes. Any other characters will
appear in the output untrandlated, such as the comma and spaces in the example above.

If you want to put literal text in the output, but it contains special formeat characters, then you can
use backdlash (\) as an escape code, or < and > as literal text delimiters.

Date/Time formatters

Code Meaning

aoraa amor pm

© 2018 Micro-Robotics Ltd

RealTimeClock 147

d Day number 0-31

dd Day number 00-31

ddd Day, abbreviated name

dddd Day, full name

h Hour 1-12

hh Hour 01-12

H Hour 0-23

HH Hour 00-23

m Minute 0-59

mm Minute 00-59

M Month 1-12

MM Month 01-12

MW Month, abbreviated name

MW Month, full name

Y Day ordinal: the characters after the day number in 1<t, 2nd, 3rd, 4th, etc.

S Seconds 0-59

SS Seconds 00-59

y oryy Year 00-99

yyyy Y ear as 4-digit number

\ Next character is literal (note that you will need to use two \ characters to
actually enter a\ into a quoted string).

<text> Embed literal text between < and >

The most up-to-date list of special date/time formetting codes appears in the Venom2 Help file.

Y ou can change the locale of the day, month and ordinal strings for different languages - see
Oper at i ngSyst em Debug inthe Venom2 Help file.

© 2018 Micro-Robotics Ltd

148

Part 2:0Object Tutorial

'Venom Seconds'

RealTimeClock stores the time as the number of seconds that have elapsed since the base date:
midnight on 1st January 1990. We call this version of time Venom Seconds.
The message Time returns this number, and allows it to be set:

-->clock.Tine :=0
-->Print clock.Tinme
4-->
There was a 4 second gap between the user setting the time and then reading it back.

Calibration

The clock's initial accuracy depends on the crystal oscillator circuit used by the clock IC. Thisis
usually accurate to around a couple of seconds a day, depending somewhat on temperature.

It is possible to calibrate the clock using the Adjust message, with a precision of around 1ppm,
which is equivalent to 30 seconds per year, assuming constant temperature. See the Venom?2
Help File for more detalils.

Date Extent

The RealTimeClock can work with dates up urtil the year 2090, at which point a software
upgrade will become necessary.

© 2018 Micro-Robotics Ltd

DateTime 149

DateTime
DateTime objects are primarily date calculators.

DateTime objects perform the complex calculations that translate between the calendar-date/
time- of-day that we are familiar with, and VVenom Seconds.

The diagramillustrates how they work.

Each DateTime object holds values of both the calendar date and time, and also the timein
Venom Seconds.

If the Venom Seconds value changes, then the date and time values will be updated to reflect it.
If any one of the date or time values changes, then the Venom seconds value will be updated.
The DayOfWeek value is purely a function of the date, and so cannot be altered directly.

Year
Month
Day
Hour

Date calculator> | V'enom Seconds

0
| DayOfWeek

Minute

Second

Creation

Y ou can make as many DateTime objects as you want, though each one uses a small amount of
menory.
Make when DateTi ne

Spurious Dates
It is possible to enter non-existent dates into a DateTime, for example 30th February.

A DateTime will normally Print a 'real’ date: in this case the 2nd March in non-leap years.
However, the Day and the Month elements of the DateTime will still hold the spurious date!
Y ou can elect to print the spurious date if you like. See the Venom?2 Help File.

Of course, if a spurious date is set, and then Time is read, Time will always reflect real date, as
there are no spurious values of Time.

© 2018 Micro-Robotics Ltd

150

Part 2:0Object Tutorial

Fixing

Y ou can fix up spurious dates by sending the Update message.

when. Updat e
This is the equivalent of

when. Ti ne ;= when. Ti ne

Days of the Week

The DayOfWeek message returns the day of the week as a number.

Day DayOfWeek
Sunday 0
Monday 1
Tuesday 2
Wednesday |3
Thusday (4
Friday 5
Saturday 6

The DayOfWeek value cannot be set as it is a function of the date.

© 2018 Micro-Robotics Ltd

DateTime 151

Number ranges

The various elements of the date and time have number ranges associated with them, which you
should obey €else an error will be issued.

Element Range
Year 1990 — 2089*
Month 1-12
Day 1-31
Hour 0-23
Minute 0-59
Second 0-59

*The Year valueisfour figures.

Printing a DateTime

Printing a DateTime prints the date and time held in the object in 1SO formet, or with special
formetting, just like printing the Real TimeClock.

Also see the Venom?2 Help File for more on printing DateTime.

Assigning a date and time

When a DateTime is first created, its time is set to zero seconds. Y ou can set its time and date
in one of four ways:

1. Print to it, like the Real TimeClock

2. Set its Time in Venom seconds

3. Set its date and time elements individually

4. Call the Adjust message to et it like a digital watch.
The code below illustrates these

© 2018 Micro-Robotics Ltd

152

Part 2:0Object Tutorial

Print To whe
when. Tinme :

when. Year

n

when. Month

when. Day := 4

when. Hour

when. M nute :
when. Second :

’

37

20
1

10

"4-1-02 10:23: 00"

8987780

02

23
0

Printing to a DateTime should obey the same rules as printing to the Real TimeClock.

If you want to use a DateTime to extract the date and time in the Real TimeClock so that you can
break it down into it's elements, you can put the clock's time into a DateTime first. ..

Make now Dat eTi ne
cl ock. Ti ne

now. Time ;=

Altering the date and time

Often you will wart to allow the operator of your equipment to alter a date and time - for

example to set or correct the time in the Real Time Clock.

There are many ways to do this, and one is to use the Adjust message on a DateTime object.

Adjust

Adjust allows you to implement ‘ digital watch’ style methods to change the date in a DateTime

object.

Every time Adjust is called it will increment or decrement a single part of the date or time, rolling

over if the maximum or minimum value for that field is exceeded.

The part of the date (Day, Month, Year, Hour, Minute, Second) is specified by an integer

parameter, or by a character constant (which is also an integer, actually).

© 2018 Micro-Robotics Ltd

DateTime 153

Part of date Number | Letter
Day —ranging 1-31 6 ‘o
Day — only correct date range 0 ‘D’
Month 1 ‘M’
Year 2 Y’
Hour 3 ‘N
Minute 4 ‘m
Second 5 ‘s

All other valuesare ignored

For example

Dat e. Adj ust (0, 1)
Date. Adjust('D , 1)
are the same — increment the day value.

To decrement avalue, use avalue of ‘-1’ instead of 1.

If you use values of the increment larger than 1, then this value will be added or subtracted from
the date element. However if the value rolls over, it will roll over to the exact maximum or
minimum value for that part of the date.

Day value

Notice that there are two choices for nudging the day value - one that uses the range 1-31 and
the other that only uses the number of days in the month currently held by the DateTime object.

See the Vemom2 Help File for more detailed informeation.

© 2018 Micro-Robotics Ltd

154 Part 2:0Object Tutorial

Timer

The Timer object is a millisecond countdown timer. Y ou can give it atime period, set it going
and test it to see if it has timed out.

Here we make a Timer with a default time period of 10 seconds.

Make t Timer (10000)
... and set it going...

t. o
Y ou can test whether a Timer has finished using Done. Done will return True when the Timer
has finished timing.

Awai t t. Done

Other Messages
Per i od will set and read the Timer's time period in milliseconds.
Ti e will set and read the period remaining in milliseconds.

Printing

Y ou can print a Timer in various formets to show how much time it has left. Y ou should use
colon formatting to get the format you wart.
-->Print t:1 , CR

00: 00: 10
-

Printed Format

DD:HH:MM:SS

HH:MM:SS

MM:SS

SS

© 2018 Micro-Robotics Ltd

Timer 155

Key

D isaday digt (range 0-24)

H is an hours digit (range 0-23)

M is a minutes digit (range 0-59)

Sis a seconds digit (range 0-59)

Note: there are more formatting options for Timer - see the Venom2 Help file.

© 2018 Micro-Robotics Ltd

156 Part 2:0Object Tutorial

Stopwatch
Stopwatch is a millisecond up-counter. Y ou can use it to time how long things have taken.

Stopwatch will start counting milliseconds as soon as it has been made.

-->Make s stopwatch
-->Print s. Tine
7395-->

Y ou can reset to zero at any time with Reset.

Note that after around 24 daysthe Time returned by a stopwatch will overflow, and is not
eadly usable. The overflow will cause Time to go to the most negative integer value and
count towards zero, from where it will carry on as normal.

Printing
Stopwatches print in the same ways as Timers.

© 2018 Micro-Robotics Ltd

SerialPort 157

SerialPort

SerialPort objects control serial communication ports. Y ou may aready have been using one of
them as the default output device for the Print command.

The five ports can operate at standard baud rates up to 115,200 Baud, and higher for non-
standard Baud rates.

Creating a SerialPort
Here we create a serial communication object on port 1:

Make serial Serial Port(115200, 1, 1)
The three parameters define the port's baud rate, serial port number and handshaking
method.

The port numbers range from 1 to 5. Port 1 is the main serial port usually used to communicate
with the terminal window in your development system

The handshaking parameter value is shown in the table:

Value |Handshaking

0 NONE
1 Hardware
2 Software

The baud rate and handshaking can also be changed after the port has been created.

Messages

The main messages you need to know about are Put, Get and printing.

Get fetches a character from the serial input buffer. If there is no character in the buffer, Get will
wait

character := serial.Get

Printing to the serial object sends the print output to the serial output buffer. Each character is
taken in turn from this buffer, and transmitted. If there is no room in the buffer, then the print will
wait. Serial is the default print output device.

-->Print "Fred"

Fred-->
Put sends a single character to the serial output buffer.

© 2018 Micro-Robotics Ltd

158

Part 2:0Object Tutorial

-->Serial.Put('A)
A ->

If your application should not wait for an indeterminate time for the input and output buffers, use

the Free, Look and Queue messages.

More messages

SerialPort objects can take many more messages. Please see the Venom?2 Help File for full

details.

© 2018 Micro-Robotics Ltd

OperatingSystem 159

OperatingSystem

OperatingSystemis used to mop up quite a lot of general system functions that would otherwise
clutter the Venom language.

It only makes sense to have one OperatingSystem object, and this is defined in the default
startup procedure

Make system Operati ngSystem

Shortcut

Because of a shortcut in Venom, some system messages can be sent without the sy st em in
front of them - when seen by themselves they imply the system object. Thus the two lines below
are equivalent, and will reset the controller.

-->system Reset

-->Reset

The full list of messages that are implicitly sent to the system object is

Run
Reset
Debug
PrintF
Pr ot ect

Operating System Messages

Here some of the most useful operating system messages are described. The rest are documented
in the Venom2 Help File.

ErrorAction

If set to the value 1, this message will restart the Venom system if a runtime error occurs.

System ErrorAction := 1
This is essential for robust applications, but is just annoying during development, as you can't
break out of a program without resetting the controller!

For this reason the default startup procedure sets ErrorAction to zero (0) if the Program Mode
switchison, i.e. you are developing code. It is usually best to leave the default startup
procedure asit is.

© 2018 Micro-Robotics Ltd

160

Part 2:0Object Tutorial

RunMode
The RunVbde message returns the 'run mode' state.
There are two versions of the message.

This version below returns the soft run mode state - this returns True if the Program Mode
switchis set to Off, or if you used the Run message.

syst em Runhbde

This version returns the hard run mode state - it returns True only if the Program Mode switch is
set to Off:

system RunMode(1)

Debug

This covers a ragbag set of functions that may help when debugging the Venom system. There
are very few things here that the average Venom application writer needs to know.

If you just type Debug, it will list out its capabilities. These are liable to change.

Free

This returns the amount of general- purpose heap memory left in the controller.

-->Print system Free
99466- - >

It will also report on other areas of the controller's memory, as shown in the table:

system Free(0) Heap memory free

system Free(1) Largest free block in the heap

For exanmple, to find the largest free block...

-->Print system Free(1)
107982- - >

Protect

Protect message allows you to take the code you have developed in RAM and copy it to the
Protected Application Area (in Flash memory), where it is much safer from accidental erasure.
Usually you won't need to do this until you have finalised your application code.

Prot ect (1) will copy your application code from RAM into the Protected Application Area.

© 2018 Micro-Robotics Ltd

OperatingSystem 161

It'sbest to use Pr ot ect (0) first - to make sure there is no application in flash - before using
Protect(1).
Mostly, Protect is typed at the command line, e.g.

-->Protect (0)
-->Protect (1)

Protect also has other options:
Protect (0) Erases the Protected Application Area
Protect (1) Copies the application from RAM into the Protected
Application Area
Protect (2, ...) |May beused to create binary distribution files (.vex and/or .
V0S).

This has been superseded by Protect(4) for most purposes.

Protect (3) Looks for binary application and/or operating system files (.vex,
.vos files) in the root directory of the Flash Filing System and
uses it/them to update the VM 2's firmware.

Protect (4, ...) |CreateaVenom Firmware Update (.vfu) file, which combines
your application and and the Venom OS into one distributable
file. This may be used to program your units in production, or
for remote firmware update.

See Oper at i ngSyst em Pr ot ect inthe Venom2 Help
File for more information.

Run

This will cause the controller to reset asif it were in Run Mode. This is useful when you are
testing your application during development. 'Y ou can leave the controller in program mode, and
just type Run to exercise your application as if it were powering up in Run Mode.

Shortcuts

Note that the function key F10, and the Run icon will send 'Run’ to the terminal - these are short
cuts to achieve the same thing - running your application.

© 2018 Micro-Robotics Ltd

162 Part 2:0Object Tutorial

Reset

This immediately resets the controller. The controller will start in either program mode or run
mode depending on the program mode switch. Thisreset is just the same as a power-on reset
for the controller. However, other parts of the hardware system may not be reset fully if they
rely on power-on to reset them.

Speed

Y ou can control the clock speed on the VM2 using the Speed message. Y ou can set the speed
in increments of 8BMHz from 16 to 72MHz. Y ou might warnt to do it to make your controller use
less power.

system Speed : = 16

When Speed is changed you may have to reset the speeds of other objects that had aready
been defined, like the serial ports or 12CBus, as their speeds were defined relative to the original
VM2 clock speed.

The procedure below shows how this can be done:

To change_speed(sp)
Local tenp := serial.Speed ; Record the original serial
speed.
system Speed :
serial . Speed :

sp ; Set the master clock speed.
tenp ; Now reset the serial speed.

net. Reset ; Reset the |2C Bus to take account of new system

speed.
End

PRINT

When you print the system message, a listing of useful system parametersiis given.
-->Print system
Synbol table 48 bytes
7 d obal variables
99478 Heap bytes free
-->

The format and content of this will change fromtime to time.

© 2018 Micro-Robotics Ltd

Creating new classes 163

Creating new classes

Some programs are much easier to write and maintain if you can group together items of data
thet are logically connected into a single entity.

For example, you might want to hold data about a set of people, say their names, ages and
heights.
One way of doing thisis to create a variable for each attribute of each person. E.g.

Per son_A nane "Fred Jones"

Person_A age = 35
Person_A height:= 1.76
Person_B nane ="JimSmth"
Person_B age = 32
Person_B height:= 1.78

However this very quickly gets out of hand if you wart to add more attributes, or add more
people.

Another way of doing it isto create three separate arrays of data:

Make nanmes Array(String, 100)
Make ages Array(Ilnt 8, 100)
Make hei ghts Array(Fl oat, 100)

This is much better than using variables because you can add new people easlly, but it is still
rather cumbersome:

* Every time you want to add a piece of data to the description of a person you have to
add an additional array, and the code to manipulate it

* Accessing the set of data for any particular person becomes unwieldy as each itemis an
array expression.

* Every person has to be represented within a system of parallel arrays - you can't easily
represent isolated individuals.

A better way of solving this problemis to encapsulate the data for each person within a single
entity (an object), and then manipulate these objects - grouping them together into lists, or
passing them around individually. Even better, you can also encapsulate the code that
manipulates the data within the object.

Venom allows you to do all of this by defining your own new classes (or types) of object.

To solve the problem described above, we would define a new class of object called Person,
and then create a new object of type Person for each real person we wanted to represent in our
program.

Once you get used to using Classes you may find that you want to use them evenin
stuations where you don't need more than one instance of the Class, because the

© 2018 Micro-Robotics Ltd

164 Part 2:0Object Tutorial

encapsulation of code and data makes your program much easier to write and maintain.

Defining a Class

Each class has alist of data elements called members. Each of these members has a name and
adata type. Data types might be integer or floating point, or other types.

For example a sinple class definition might be
Cl ass Person

Age I nt
Hei ght Fl oat
End

There are many other member data types possible - including different sizes of integer, String,
Array, Buffer, or 'Any' - we will look at these later.

Creating objects

User-defined objects are created similarly to other objects, so we can create a new object of
type Person like this:

Make p Person

or like this:
p := New Person
g := New Person

Each object of type Person we create is caled an instance of the class Person.
Accessing class members

We can access any member of the object by sending the object a message. Here we send the
object p the message Age, to read the value of Age:

a .= p.Age
or

Print p.Age

Thereisa quick way to print all the members of a user-defined object for debugging
pur poses.
-->Print p
Person (at $64000c64)
Age = 0
Hei ght = 0.
Note that the memory address of the object is printed after itstype as this address
uniquely identifies the object.

© 2018 Micro-Robotics Ltd

Creating new classes 165

We can also write to the members of p explicitly:

p. Age := 21
p. Height := 1.85

Initial values of members

When a new object is created, each member of the newly created object is set to the default
initial value for its data type, which is zero (0 or 0.0) for all numeric types.
-->p : = New Person
-->Print p
Person: (at $64000c64)
Age = 0
Hei ght = 0.

Member types

Members of a class can have types such as Integer, Floating point number, St ri ng, Arr ay,
Buf f er - all of the built-in Venom object types - or Any (Any means the member can hold a
venom value of any datatype - e.g. any kind of object, number, string, etc.).

Note that when a member is an object of some kind, the member only holds a reference to the
object, just as when you create an object with Mak e the global variable only holds a reference
to the object created.

For example we might add a member called Name to the Person class. Name has the type
Sring.
Cl ass Person
Age I nt
Hei ght Fl oat

Nane String
End

And we could create a new Person object and initialise Nane with a string constant like this:

p := New Person
p. Nane := "Janes”
Or we could create a new Person and initialise Nane with a String obj ect like this.

p := New Person
p. Name : = New String(50)
Note that the Sring object will be empty until sometext is put in it, like this:

Print To p.Nane, "Janes"
or

p. Nane. Put (" Janes")

We can create members with types like Ar r ay, Buf f er , C ass or Any. For example

© 2018 Micro-Robotics Ltd

166

Part 2:0Object Tutorial

Cl ass Person
Age | nt
Hei ght Fl oat
Name String
Tel ephoneNunbers Array
Li st O Contacts Buffer
O her Any

End

‘New' Strings and Arrays

Y ou can declare String or Array members of a Class as New, which means that a new String or
Array object will be created and assigned to that member automatically when the object is
created, and will be removed autometically when the object is removed. See the following
example:
Cl ass Person

Age | nt

Hei ght Fl oat

Name New String(50)

Li st New Array(lnt, 50)
End

Note: Only Arrays of numbers may be declared in thisway - not arrays of strings or
pointers.

Note:

1. Youcant overwrite a New member (that is, you can't overwrite the referenceto it); a
New String or Array it is permanently associated with the object. However, you can
empty the String or Array and write what data you like into it.

2. New String and Array members are removed automatically when your object dies.

Complete list of types
The complete list of member types you can specify are listed in the table:

Type specifier Type of data stored in the member Default initial value
| nt Integer (32- bits, signed) 0
Int 32 Integer (32-bits, signed) 0
Int 16 Integer (16-bits, unsigned) 0
Int 8 Integer (8-hits, unsigned) 0

© 2018 Micro-Robotics Ltd

Creating new classes 167

Fl oat Floating point number (IEEE Single precision)|0.0
Any built-in Venom | Reference to an object Un-initialised
object type*
C ass Reference to an object of atype defined by |Un-initialised
Class
Any Any Venomtype (number, object, pointer, Ni
€tc)
New String String Empty String
(capacity)
New Array Array Array filled with
(type, Iength) integer or floating
(type must be point zeros.
nuUmMeric)

*Notethat Di gi t al and Anal ogue may be specified but will be converted to Any
because of the way they are represented internally.

Removing objects from memory

If your program no longer needs an object you can remove it from the system (freeing up any
memory it took) by sending it the message Die.
Y ou may remember that you can use AutoDestruct to autometically send Die to objects that are
held in Local variables when a procedure exits. Y ou can also use Aut oDest r uct to
autometically remove sub-objects held by an object wheniit dies. This can be very useful when
you have a tree-like structure of objects that you need to remove. Y ou can send Die to the
‘trunk’ of the tree, and all the 'branches marked with Aut oDest r uct will aso be removed.
This feature is often used in conjunction with Buffer of Any, which will pass on the Die message
to all the objects it contains.

Cl ass MyC ass

I D Int

MyOwner C ass
MyLi st Buffer AutoDestruct

End

When to use AutoDestruct

There is asimple rule that governs when to use Aut oDest r uct ona Class member:
* If the member object is created by the Class, then use Aut oDest r uct
* If the member object is passed into the Class from outside, then don't use Aut oDest r uct

© 2018 Micro-Robotics Ltd

168 Part 2:0Object Tutorial

* Notethat New St ri ngs and Ar r ays are automatically giventhe Aut oDest r uct attribute
S0 you don't have to apply it explicitly.

For even more finely controlled behaviour, you can override the Class-defalit Die message with
your own Die method - thisis covered later.

Methods

So far the Person class we have created only has data - it doesn't have any procedures or
methods thet act on that data.

It is easy to add methods - they look just like normal procedures, but inside the Class definition.

Cl ass Rectangle
Wdth Int
Hei ght | nt

To Area
Return Wdth * Hei ght
End

End

-->Make r Rectangl e

-->r.Wdth := 10

-->r.Height := 20

-->Print r.Area, CR
200

-->

Initialising objects

When you first create a user-defined object with New or Make the object is alocated some
gpace in memory and each member of the object is reset to the default value for it's datatype.

Just like with other Venom objects, you can pass parametersto New or Make. But to process
these parameters you have to give your class a special method called | ni ti al i se.

Thisl ni ti al i se method will be called by New or Make, and they will pass on their
parameters so it can use themto initialise the new object.

For example we might do this:

© 2018 Micro-Robotics Ltd

Creating new classes 169

Cl ass Rectangl e
Wdth Int
Hei ght | nt

To Area
Return Wdth * Hei ght
End

To Initialise(Wdth, Height)
[f Wdth > 400
Wdth := 400
I f Height > 200
Hei ght := 200
This.Wdth := Wdth
Thi s. Hei ght : = Hei ght
End

End

--> Make r new Rectangl e(100, 100)

Our Initialise method uses the parameters we pass to New to initialise the Rectangle's Width and
Height. We also take the opportunity to check the values and limit themif they are too big.

Notice that we introduce a new Keyword, Thi s. Thi s isused here to tell the compiler that
we are referring to the class member, not the local variable of the same name.

(Thi s canalso be used to refer to the current instance of the class - i.e. the object that the
message was sertt to).

Optional parameters

Y ou can define an I nitialise method to take optional parameters, and/or use variable types of
parameters and check themusingthe TypeOf operator, to provide different ways to create a
new object.

See the Venom2 Help file for more information about the Initialise method.

Indentation

Notice that the method code is indented (using space characters). This makes it visually clear
that the method is inside the Class definition.

Member and method names

Y ou can use any legal venom name for members and methods. Member and method names
won't interfere with global, local or parameter names: a global variable, a local variable/

© 2018 Micro-Robotics Ltd

170

Part 2:0Object Tutorial

parameter, and a member/method could all have the same name but would still coexist happily.

When several things use the same name, you can to tell the compiler which of the three name
spaces to use with the keywords Thi s or A obal :

d obal . height := 5
This. height := 10

Accessing global variables

By defauit, you can't access global variables frominside a method of a Class. However you
can explicitly specify a gobal variable by usingthe G obal operator:

Print To dobal.serial, "Hello", CR

Alternatively you can declare alist of globals that you wart to use within the Class, at the start of
each Class:

Class M/ C ass
d obal serial, clock, net

End

Optional parameters

Parameters to methods (or any Venom procedure) may be declared as optional by using[] to
enclose the optional parameters.

See here for more information on optional parameters.
Active variables

A method can be an active variable. To turn a method into an active variable you have to use :
= followed by a parameter name, after the method name and optional parameter list. For
example, this can be used to implement the Element message for a two-dimensional array class
Array_2D. Partial code for the Class's Element message, which is an active variable, is shown
below; the keyword Assi gnment is used to detect when an active variable is being written to:

© 2018 Micro-Robotics Ltd

Creating new classes 171

Class Array_2D

To El ement (x, y) := val
I f Assignment
[

]

El se

[

Return ...
]
End
End

: = val

Using the array:

a2d := New Array 2D(Int, 20, 30)
azd. (1, 2) :=3
y .= a2d. (1, 2)

Inheritance

Oftenit is useful to re-use software that you have already developed. A property of Classes
called Inheritance allows you to do that more easlly.

I nheritance allows you to create a new, derived, class by inheriting the behaviour of an existing,
base, class, and adding to or modifying that behaviour.

Consider the following class for implementing a button in a graphical user interface.

Looking at the code, you can see that this class is allowed to access the global variable called
L CD; it has arectangular extent defined by the members Xpos, Ypos, Width and Height; and
it has a method to Draw itself, and a method to I nitialise itself.

© 2018 Micro-Robotics Ltd

172

Part 2:0Object Tutorial

Cl ass Basi cButton
d obal LCD

Xpos | nt
Ypos | nt
Wdth Int

Hei ght I nt
Label String

To Draw
LCD. t ext Box(Xpos, Ypos, Wdth, Height, 1)
Print to LCD, Label

End

To Initialise(Label, x, y, w, h)

Xpos = X

Ypos =y

Wdth := w

Hei ght :=h

Thi s. Label := | abel
End

End

We might wart to create a new kind of button that can do all the things that the original button
can do, but dightly differently. So we can define a new class thet inherits the original class (note
the colon operator that indicates inheritance). When a new class is declared, that inherits an
existing class, all the members and methods of the base class are available in the derived class,
so if we do nothing else, the new class's behaviour is exactly the same:

Cl ass NewButton : BasicButton
End

To change its behaviour we can add a method; in this case we add a method with the same
name as one in the base class:

Cl ass NewButton : BasicButton
d obal |cd
To Draw
Lcd. t ext Box(Xpos, Ypos, Wdth, Height, $100)
Print to Lcd, Label
End
End
So the only behaviour we change here is how the button draws itself. Re-defining the Draw
method overrides the original class's Draw method.

Overriding simply means declaring a method in the derived class which has the same name as a
method in the base class, and which becomes the new default method of that name.

© 2018 Micro-Robotics Ltd

Creating new classes 173

In this case, the new Draw method uses a different (constant) border style when drawing the
button.

We can also add new members to a derived class:
Cl ass NewButton2 : Basi cButton

d obal |cd
Bor der | nt
To Draw

Lcd. t ext Box(Xpos, Ypos, Wdth, Height, Border)
Print to Lcd, Label
End
End

Here we've added a new member, Border, and redefined Draw so that this value is used to
define avariable border style for the new class.

Typically, modifying the behaviour consists of any of the following:
1. Overriding existing methods
2. Adding new members
3. Adding new methods

We have covered points 1 & 2 above.

Adding new methods

To add a new method to a derived class you just have to declare it as normal. Make sure its
name doesn't clash with any exisitng method or member name. For example, here we add the
new method MoveTo:

Cl ass NewButton2 : Basi cButton

d obal |cd
Bor der | nt
To Draw

Lcd. t ext Box(Xpos, Ypos, Wdth, Height, Border)
Print to Lcd, Label

End
To MoveTo(X, YY)
Xpos := X
Ypos =y
End
End

Where to 'put' behaviour

A lot of thought will often go into deciding which behaviour (methods and members) should be
contained in which Class in a set of derived classes.

© 2018 Micro-Robotics Ltd

174

Part 2:0Object Tutorial

Overriding the Initialise method

Often the Initialise method is overridden in a derived class, especidly if the derived class has new
members which will need initialising.

One way to define a new Initialise is to copy the old one and add new initialisation code:

To Initialise(Label, x, y, w, h, b)
Xpos = X
Ypos =y
Wdth := w
Height :=h
Thi s. Label := | abe
Border := b
End

Another way is to call the Initialise method in the base class, and then initialise members declared
inthe new class:

To Initialise(Label, x, y, w, h, b)
Base. I nitialise(Label, x,y,w h)
Border := b

End

Note the use of Base to specify which version of Initialise we are calling (not the one we are in,
but the one in BasicButton). If we didn't use this then we would be indicating that I nitialise should
call itself recursively.

Overriding members

Members may be overridden in the same way as methods, though this is much less common.
When there is an overridden member, the class has two (or more) values associated with that
member name. Y ou can use Base, to access the base valug(s).

Listing classes

Thecommand Li st Cl ass will list out al the classes you have defined, in an inheritance tree,
allowing you to see how your class inheritances are organised.

Inheriting Venom types

It is not possible for a user-defined class to inherit a Venomtype, suchas St ri ng, Buf f er or
Ar r ay. However it is possible to emulate this using message redirection.

© 2018 Micro-Robotics Ltd

Creating new classes 175

Accessibility

It is often useful to 'hide’ alot of the data and code used in a class so that they are not visible
from outside the class. This allows a class to present a very tightly controlled ‘interface’ to the
rest of the system, which makes the overall system much easier to debug and maintain.

This hiding of data and code is achieved by using the keywords Pr i vat e and Pr ot ect ed in
member and method definitions.

For example, inthe class Basi cBut t on we looked at before, we might decide to use the
Pri vat e keyword make the Label member invisible outside the class:

Cl ass Basi cButton
d obal LCD

Xpos | nt

Ypos | nt

Wdth Int

Hei ght | nt

Private Label String

To Draw
LCD. t ext Box(Xpos, Ypos, Wdth, Height, 1)
Print to LCD, Label

End

To Initialise(Label, x, y, w h)

Xpos = X

Ypos =y

Wdth := w

Height :=h

Thi s. Label := | abe
End

End

However, this will mean that classes inheriting Basi cBut t on would not be able to accessthe
Label member. If wewant such derived classes to be able to access Label we canuse
Pr ot ect ed instead:

© 2018 Micro-Robotics Ltd

176 Part 2:0Object Tutorial

Cl ass Basi cButton
d obal LCD

Xpos | nt

Ypos | nt

Wdth Int

Hei ght I nt

Protected Label String

To Draw
LCD. t ext Box(Xpos, Ypos, Wdth, Height, 1)
Print to LCD, Label

End

To Initialise(Label, x, y, w, h)

Xpos = X
Ypos =y
Wdth := w
Hei ght :=h
Thi s. Label := [abel
End
End

There is another keyword, Publ i c, that is not often used because it is the default for all
members and methods in Venon2.

Summary

Here is a summary of the properties of Pr i vat e, Publ i ¢ and Pr ot ect ed:
® Privat e:the member or method is only visible in the class where it was defined.

® Protect ed: the member or method is only visible in the class where it was defined,
and in derived classes.

® Publ i c:the member or method is visible anywhere - you can send messages to an
object to access this member or method. This is the defauilt.

Class-default messages

In Venom, all user-defined objects have a common set of 'Class-default' messages, that they
recognise. The Die message is one of these - the Class-default Die message removes the object
from memory, and also passes on Die to any 'sub-objects' that have the Aut oDest r uct
attribute).

Class-default messages may be overridden. For example you might override the Die message
because you warnt the object to do some special tidying up before it dies. To illustrate this we

© 2018 Micro-Robotics Ltd

Creating new classes 177

might write the Person class like this:
Cl ass Person

YearOFBirth Int
Hei ght Fl oat
Nane String

To Die
A obal . gl obal _|ist. Renmove(This)
Base. D e

End

End

Notice that the Die method first removes the person from some global list (we won't go into the
details of this) and then calls the base Die message to actually remove itself from memory. Inthis
case there is no explicit base class, so the Class-default Die message is called.

Calling Class-default messages explicitly

Sometimes you may wish to call a class-defauit message explicitly, rather than as an implicit base
class. For example, to find the class name of a user-defined object you can do this:

Print nyQbject.[d ass] Nane
Fromwithin a user-defined class you can also use these variarts:

Print This.[Cd ass] Nane
Print Cl ass. Nane

Full list of Class-default messages

The full list of Class-defavit messages that are understood by all user-defined Classes is given in
the table below.

All of these messages may be called explicitly, and some may also be called autometically by the
system, as indicated in the table.

'Class-default’ | Function Called internally...
message
Addr ess Return the memory address of the
object'sdatablock. Thisis
intended only for debugging
pUrpoSes.
Die Remove the object; also send Die |By Aut oDest r uct

© 2018 Micro-Robotics Ltd

178

Part 2:0Object Tutorial

to all sub-objects that have the
Aut oDest r uct attribute.

Return the object's class name.

Pri nt

Prints a user-defined object to the
current output stream by
attempting to print the value of
each member. Sending this
message explicitly is only
meaningful inside a method called
Print.

If parameters are supplied then
these are used for formatting in the
same ways as the colon formetting
specifiersina prirt list.

By Pri nt

<obj ect >

PrintF

Sending a PrintF message is one
way to send text to an object.
For this to work you must define
anAcept Pri nt Job method in
your class. See here for more
informetion.

Length

Returns the number of bytes
needed to hold a binary record
representation of the object.

Special methods

There are some special methods that may be defined within a Class. The three we deal with here
are used to print objects, and print to objects.

Printing objects

If you want to be able to print your object, asinPri nt p, then you have to define a method
caled Pr i nt . For example, this method might be defined as part of the Person class:

To Print
Print Nanme
End

, " is ", Height, "mtal

© 2018 Micro-Robotics Ltd

Creating new classes 179

The Person's Pr i nt method will be called if you make a Person object and then Pr i nt it:

-->Make p Person(1l.78,"Ruth")
-->Print p, CR

Ruth is 1.78mtall

-->

If you define your Print method to take optional parameters, then the parameters will take the
values of any "colon’ print formatting values used in Print. For example:

To Print([frnt])
Sel ect Case frnt
Case O
Print Nane
Case El se
Print Nane, " is ", Height:1:1, "mtall"
End

-->Make p Person(1970, 1. 78, "Ruth")
-->Print p, CR

Rut h

-->Print p:1, CR

Ruth is 1.7mtall

Printing to objects, or sending PrintF

If you want to print to your object, or send aPr i nt F message to it, you must define a method
called Accept Pri nt Job.

Y ou should not define a method called Pr i nt F, as this will not work. For more informetion on
sending print to your classes, look up Print To Class in the Venom2 Help File.

Classes as Records

One important use for user-defined classes is to define data templates for records in Files,
EEPROM s or other storage media.

A record is a group of data items in afile (or other storage medium) where each data item within
the record has a distinct meaning, and may have a different data type and a different size.

For example afile of records might contain the details of many different people, for example their
age, name and height. Using a Person object to write, and later read back, the data one whole
record at a time makes the process a lot easier than writing, and later reading, each piece of data
individually.

As another example, an object stored as a single record in a file or EEPROM might be used as a
convenient way to manage an application's non-volatile settings. Multiple records might be used
to manage different sets of settings.

© 2018 Micro-Robotics Ltd

180

Part 2:0Object Tutorial

Put and Get

If you Put an object to a File or SafeData object, then the object will be written to the fileina
defined formet, so that when you Get an object of the same type from the file, an exact copy of
the original object is re-created.

This example uses afile, but smilar code will work for a SafeData object:
Define a record tenpl ate:

Cl ass Person
Age I nt
Nane New String(2100)
Hei ght Fl oat
End
Wite a record to a file:

p := New Person(50,"Al bert",1.7)
file.Put(p)
Read the data into a different object of the sane class:

g : = New Person
file.Reset ;'Rewind the file.
file. Get(Qq)
Print q
Per son:
Age = 50
Nane = "Al bert"
Height = 1.7

Note: you may have to remove the objects p and g after you have used them; thisis not
shown here.

Permissible record member types

In general a class used for records should only contain members thet are of type Int, Float,
Array of Int or Float and String. If you include other member types they won't be stored in the
record.

You may find it is easier to read records with classes that use New Strings and Arrays.

Data formats

Normally the data is written in a binary format. This is the best formet to use when writing to
small EEPROM devices.

However it is often useful to use a "human-readable’ formet in files. Classes support a'CSV'
format (Comma- Separated-Values) and an INI file format. See below for more details of these.

© 2018 Micro-Robotics Ltd

Creating new classes 181

Record length

Any object that isto be used as a record may be sent the Class-defauit message Lengt h,
which returns the number of bytes required to store the record in binary formet. Length is a fixed
value for all objects of a given Class so long as there are no String or non-New Array members
in the Class. However if there are such variable-length data in the Classthen Lengt h is
variable.

Reading strings

When you Get a binary record from storage, and the record contains a String, the String object
in the template is first emptied before being filled from the string held in storage. If the data is too
long for the String object (i.e. the null termination is not seen before the String object is full) then
aruntime error is issued.

Record classes must be consistent

In order to be able to write and then read back data consistertly, the template classes used for
writing and reading back should be consistent with each other; ideally they will be the same
class.

Different record classes in one file

You don't have to just use one type of record in afile. Y ou can use any number of different
types so long as you can predict which type to Get before you get it.

CSV Format
Writing in CSV format
To write records to afile in CSV formet you have to print the 'template’ object to the file like
this:
Print To file, p:",", CR
The formetting expression: ", " specifies that the object is to be printed in CSV, using comma
characters as the delimiter. The CR puts each CSV record onit's own line in the file.
Y ou could equally use this if you want to use # as the delimiter:

Print To file, p:"#", CR

Reading CSV format

To read back datain CSV format you should use Get , but with an extra String parameter -
which specifies that CSV formet is to be used and supplies the actual delimiter too. For example:

file.Get(qg, ",")

(Note: thefirst character in the string is taken to be the delimiter; the string can be any
length but extra charactersareignored.)

© 2018 Micro-Robotics Ltd

182

Part 2:0Object Tutorial

INI file format

Y ou can aso read and write user-defined Class objects in the popular and human-readable "IN
file' formet - for example:

[Per sonl]

Name="Ji nf

Age=42

[Per son2]

Nanme=" Fr ed"

Age=56

When you print an object with the format descriptor " | NI " (case sensitive!) then the object will
print all it's membersin INI file format:

Cl ass Person
Nanme New String(50)
Age Int 8

End

p := New Person("Fred", 56)
Print to nyfile, p:"IN"
prints to the object myfile:
Nanme=" Fr ed"
Age=56
Y ou have to add the section headers yourself, by printing them, e.g.:
Print to nyfile, "[Personl],cr

To read an object back from a file you have to use Get, for example like this:
section := New String(50)
p := New Person("[no nane]", O0)

myfile.CGet(section) ; read the section header
n:=mfile. Get(p,"INI") ; read the object data

Each member of the Person object p will be filled from the values found in the file.
Member names are not case sensitive.

Member values will be read until the end of the file, or aline beginning with [, is seen (the start
of the next section header). The file is 'rewound' so that the [is the next character to be read
fromthe file.

If a member value occurs more than once then it will be over-written with the last value seen.

Arrays are listed in commea- separated- value format, with a\ to indicate continuation on the next
line.

© 2018 Micro-Robotics Ltd

Creating new classes 183

Strings are aways in double quotes and no escape characters are supported currently.
Lines starting with ; or # are treated as comments and ignored.
Get will return the number of member values it read.

Data errors
If there are errorsin the INI file these will normally be ignored by Get.
However, if you pass a third, non-zero, parameter to Get then it will throw a "Script/Data error”
if
* A nonexistent member name is seen
e A member is of atype that can't be represented inan INI file
* Anarray overflows
For exanple:
n:=nyfile.Get(p,"INI", True) ; read the object data

Advanced topics

Sending messages to a derived class

By defauilt, the compiler will resolve accesses to members or methods of the current class
immediately (i.e. at compile time). However, you can force the compiler to delay resolving the
access urttil run time by using the keyword Der i ved:

Derived. Message
This allows for a possible override of the message declared in a derived class.

For example

© 2018 Micro-Robotics Ltd

184 Part 2:0Object Tutorial

Cl ass Base(ass
To Met hod
End
To Test Met hod

Method ; Call the nethod in the *current* cl ass.
Derived. Method ; Call the nethod in the *derived* cl ass.

End

End

Cl ass Derivedd ass : Based ass
To Met hod
End

End

Calling an overridden base method

There are some situations where you wart to call the base version of a method thet has been
overridden. Y ou can use the keyword Base for this:

O ass nyd ass : basecl ass
To et hod

Base. net hod

End
End

Indirect message send

Y ou can take a reference to a message (or member or method), that may be used to send a
message indirectly later. Message references are actually 16-bit integers in Venom?2

To take a message reference, use @followed by a dot and the message name. For example:
megref := @ WCal | BackMet hod
To send the message you have to use this syntax:
<obj ect>.! (<nessage ref>)(paraneters)

For example

© 2018 Micro-Robotics Ltd

Creating new classes 185

object.!(msgref)(pl)

A larger example of this being used is listed below.

G ass W ndowC ass
Name String
nyButton C ass
To Actionl(pl, p2)
PrintF("We are in %.actionl, params: % % \n", Name, pl,

p2)
Return "This is the Action 1 return val ue"
End
To Initialise(nane)
Thi s. Nane : = nane
This. myButton := New ButtonC ass("Buttonl”, This, @Actionl

)
End
End

Cl ass Buttond ass
Nane String
CB obj Oass ; Call-back object
CB nsg Int ; Call-back nessage ref

To Ondick
Ret urn
CB obj.!'(CB nsg)(1,2) ; This is the call-back
End
To Initialise(name, CB obj ,CB nsQ)
Thi s. Nane : = nane

; Set up the call-back 'pointer':

This.CB _nsg := CB_nsg
This. CB_obj := CB_obj
End
End
To main

w : = New W ndowCl ass("W ndowl")
Print w. nyButton.OnCick, CR
End
On running this program the result is
We are in Wndowl. actionl, parans: 1 2
This is the Action 1 return val ue
-->

Method prototypes/recursive methods
If you need amethod in a class to be able to call itself - ie. recursion, you have to "prototype’ the

© 2018 Micro-Robotics Ltd

186 Part 2:0Object Tutorial

method before it is seen or else the compiler will complain. For exanmple, here the compiler will
complain that it can't call Method because it has not been defined:

Class a
To Met hod(n)
If n
Met hod(n- 1)
End
End
To get around this you can 'prototype’ the method by defining an empty method of the same
name first:

Class a
To Met hod End ; Prototype

To Met hod(n)
If n
Met hod(n- 1)
End
End

Message redirection

It is possible to arrange for a Class to appear to inherit a Venom pre-defined type, such as
String, Buffer, Array or any other type (these base types can't be inherited directly in the normal
manner as they are too different to user-defined Classes internally).

This can be done by message redirection, where a defined set of messagesto a Class are
passed on to a particular member (or menbers) of the Class. The messages to be redirected
are listed, with dots, after the member declaration, as in the example below.

© 2018 Micro-Robotics Ltd

Creating new classes 187

Class XYString

XPos I nt

YPos | nt

str String
. Put
. Cet
. Enpty
. Print
. Accept PrintJob
. Free

To Initialise(x,y,size)

XPos := X

YPos =y

str := New String(size)
End

End

-->xys = New XYString(10, 20, 50)
-->print to xys, "Hello Wrld"
-->print xys, CR

Hell o Word

-->

It is possible to have more than one member set up to have messages redirected to it, but the
sets of redirected messages should not overlap.

The type of the target member for redirected messages can be Any, so you can put any Venom
objectinit.

Objects that run in their own tasks

It is sometimes useful to have objects where each instance runs in a separate task. This example
shows how this can be dore.

© 2018 Micro-Robotics Ltd

188

Part 2:0Object Tutorial

Cl ass WebServer
idInt ; An identifier for this object

To Thread
dummy code:
Print "Webserver: ", i1d,CR
Await False ; wait here forever
End
To initialise(id)
This.id :=1id
Start Thread ; Run each instance in it's own task.
End
End
To main
Repeat 4
New WebSer ver (1 ndex0)
End

Inheritance Testing

Sometimes it is useful to check that an object that has been passed as a parameter, or fetched
from a Buffer or Class menber, is the correct type for the operation you are about to perform
onit.

One way to do thisisto check that the object either is, or is derived from a given base Class.
The | s operator is used for this purpose.

If x Is Myd ass
[

X. Message
]

Interface testing

Another test you can performis whether a user-defined object has a member or a method with a
given name - using the Has operator:

I f x Has Met hodNane

[
x. Met hodNane

]

Note that Has won't work with pre-defined Venomtypes, suchasDi gi t al , St ri ng, etc.

Handling errors during Initialise
Sometimes you may want to handle errors that occur during a Class's Initialise method. Usually

© 2018 Micro-Robotics Ltd

Creating new classes 189

you should arrange your code so that Initialise doesn't generate errors - for example by checking
parameters for valid ranges before you make a new object, or by converting out of range
parameter values to valid values within the I nitialise method.

However if you really do need to handle errors in I nitialise you may encourter a problemin
Venom: the Initialise method is called after the block for the new object has been allocated on
the heap. If the error is trapped using Try and Catch outside of Initialise then a garbage block
will be left onthe heap. Here is one way to get around this problem:

To Initialise
Aut odest r uct
Local ref := This ; Autodestruct This on errors

; <code that nmy cause an error>

ref := 0 ; Don't Autodestruct This on nornal return
End

© 2018 Micro-Robotics Ltd

190

Part 2:0Object Tutorial

The End

This is the end of the Venom2 Object Tutoria - you have been introduced to some of the more
commonly used objects that are built into the VVenom language.

Y ou may wish to read about the large number of other objects available, al detailed in the
Venom2 Help File.

Y ou are now ready to start writing your own application for VM 2. There is a checklist for how
to plan and complete your application in Appendix A: Development Checklist.

© 2018 Micro-Robotics Ltd

Appendices

191

© 2018 Micro-Robotics Ltd

192

Appendices

A: Development Checklist

The steps involved in developing a typical Venom application are presented here. 'Y ou may
have completed some of these already.

1

Satisfy yourself that the controller and application board have the hardware interfaces
that you require. See the datasheet for the controller. Often customers will buy the
controller from Micro-Robotics Ltd, and make the application board themselves.
However, Micro-Robotics can design and manufacture custom application boards.

Get familiar with the VVenom language and basic Object Types by reading this manual
and by trying out your ideas on your development system.

3. Also usethe Venom2 Help File. Thiswill be required for all serious applications.

© © N o

Using prototype hardware, write key sections of your application programto make sure
that they are viable.

Design and build the real application hardware in conjunction with the controller's
datasheet and example circuits.

Write the complete application program using the real hardware.
Go through Appendix D to meke sure your application is as robust as possible.
Test the application hardware and software.

Protect your application from erasure by burning it into the Flash. See the system
message Protect.

. Go into production with the application hardware and the application software.

(If possible, fix the version of Venom?2 Operating systenyLanguage that you use with
your application to avoid any compatibility issues)

Note: You can load new versions of the Operating system and/or your finished
application code into an 'empty’ VM2 using a USB Connection. This is much quicker
than other methods. See Production Programming in the Venom?2 Help File.

© 2018 Micro-Robotics Ltd

B:How Do I ... ? 193

B: How Do l...?

This ‘FAQ." section deals with how to achieve solutions to commonly encountered problems
using the Venom2 language and object types.

Store Non-Volatile Data
The following objects can handle non-volatile data:

* FileSystem: stores data and text files, RAM Filing System, the Flash filing System or
external memory cards (SD, SDHC). Files can hold very large amournts of data.

Manipulate Text

Use the text Buffer and String objects to manipulate text.
* Print To the buffer or String to append text
¢ Print all of the buffer or String, or any sub-section of it to extract text
® Use Put to append or insert text

* Use Find to search for occurrences of a sub- string.

® Use Element to access any character within the buffer or String

* Usethe String or Buffer Value message to convert text to a number
See also Array and string constants.

Enter Numbers on a Numeric Keypad

Use the NumberReader object in conjunction with the K eypad object.

Deal with Calendar Dates
Use the DateTime object to
® Convert calendar dates to and froma linear seconds value
® Deal with leap years
* Find which day of the week it is on any date
* Print the date and time in a variety of formats
* Facilitate 'digital watch' style date/time entry

© 2018 Micro-Robotics Ltd

194 Appendices

Create User Interfaces

Use the Alphal.CD or GraphicsLCD objects for displaying information and a K eypad and/or
Touchscreen object for entering data, or for navigating menus.

Time events

* UseWait, Every and Timer to have your application do things at the right time

* Use Stopwatch to time external events
e Use ReaTimeClock to relate the controllers actions to real times and dates

® Use PulseWidthin, PuseCounter, PulseWidthOut to measure and generate pulses (See
the Venom2 Help File)

Talk to serial devices

® Use SeriaPort for RS232 and RS485 communications

® Usel2CBusfor 12C Bus devices

* Usethe SPI object for devices onthe SPI or Microwire buses
® Use OneWire for Dalas 1-Wire bus and iButtons

Generate Pulses

® Usethe PuseWidthOut object.

Measure Pulses

* Usethe PuseCounter object to count pulses
* Usethe Shaft object to count quadrature shaft encoder edges
® Use PuiseWidthin to measure the pulse width

Measure Temperature

® Use athermocouple amplifier to generate a 0-3.3 Volt signal and read this using one of
the on-board 12-bit analogue inputs on the VM 2.

* Useaprecision thermistor bead and a resistor in a potential divider, feed the voltage into
the on-board 12-bit analogue inputs (0.2°C, or better, accuracy is possible). We
publish a linearisation function to convert ADC readings to temperature.

* Read athermocouple directly using an external 16-or-more-bit external ADC on the
I12C Busor SPI Bus. A thermistor can be used to measure the cold junction

© 2018 Micro-Robotics Ltd

B:How Do I ... ? 195

temperature for compensation.

Sleep with very low Power

It is possible to put the cortroller into 'Stop Mode' - where it will consume around 55
microamps. Y ou can wake it from Stop Mode either a number of seconds into the future, or
using a digital input channel. See Real Ti med ock. Ti neout inthe Venom2 Help file.

Use Files

* Usethe FileSystem object to create filesin RAM.

© 2018 Micro-Robotics Ltd

196

Appendices

C. Speed of Execution

Venon?2 is a sem-compiled language, like Java. This means it compiles your code to a set of
bytecodes. These codes are then interpreted by the VVenom runtime system to run your
application. Semi-compiled code runs faster than interpreted code, but not so fast as native
machine code.

Typically, a single bytecode will execute in 0.7y S to 1.5) S on the VM2.
A bit of code like a .= a + 1 will take ~4.5 S.
A simple message sent to an object takes something like 6uS.

Measuring Execution Times

The following code allows you to measure the execution time of bit of Venom code.

To nmeasure_tinme(n,c)
Local t
Aut oDest r uct
Local stop_watch := New St opWat ch
st op_wat ch. Reset
Repeat n

[

;commands to be tined

]

t := stop_watch. Tine
Print (t * 1000 / n - ¢):10:4, " mcroseconds", CR
End

The parameter nis the number of times the loop is repeated - increasing it increases the accuracy
of the result. The parameter ¢ is a constant adjustment thet is used to take into account the time
taken to execute the Repeat command.

Firstly, the procedure should be run with n = 100000; ¢ = 0 and the Repeat command empty.
This will then print the value to use for c.

Then put the code under test into the Repeat, choose a value of n, and use the value of ¢ you just
found. E.Q.

nmeasur e_ti ne(100000, 2. 42)

© 2018 Micro-Robotics Ltd

D: Robust Applications 197

D: Robust Applications

This section details steps you should take to make your Venom application least likely to fail in
the field.

Protecting the Application Code

While you are developing your application program, your procedures are held in battery-backed
RAM. Thisisfine for development, but not suitable for a finished application in the field: there
are marny ways to lose a program from battery-backed RAM.

Finished applications should be copied into Flash memory - which can hold it safe against loss
due to processor crashes or battery failure.

See the system message Protect.

Protecting Against Errors

Runtime errors can stop a program from running correctly and cause it to halt forever. Thisis
usually unacceptable for an embedded control application in the field.

To prevent errors from causing your program to halt, use Try/Catch to trap any errors that you
know how to handle.

To deal with errors that you haven't thought about, and so don't know how to handle explicitly,
use the ErrorAction system message.

System ErrorAction : =1

This restarts the Venom application on any error not handled by Try/Catch.

The default startup procedure defines a'safe’ setting for ErrorAction: it is set to restart on errors
if the Program Mode switch is set to 'Run'.

Serial Break

Most applications should turn off the Ctrl-C Break function, as this could potentially halt an
application. Ctrl-C Break is treated as a runtime error, o if ErrorAction is set, the Venom
application will be restarted. To turn off Cirl-C Break, use

Seri al . Escape : = Fal se

Note that this will also turn off Ctrl-T task listing.

If you want to avoid your application halting on receiving a Ctrl-C character (perhaps due to
noise) but wart to keep Ctrl-T enabled, you can leave serial. Escape set to True, but make sure
ErrorActionis set to 1 to at least ensure your application restarts on receiving a Ctrl-C
character.

© 2018 Micro-Robotics Ltd

198 Appendices

Memory

Memory leaks

A memory leak is where an incorrectly written program uses up the RAM memory in your
controller.

It's hard to spot memory leaks through normal testing as, if the leak is a low one, you might not
notice it for along time. However, in the field, your application may fail after a period because it
eventually runs out of memory.

If you have ErrorAction set correctly (e.g. leave the default startup procedure unchanged) then
your application will restart, which may lead to a good recovery.

However it's much better to check for memory leaks and fix them, before the application is
released.

A typical memory leak looks like this:

To proc
Make b Buffer(Int 8)
further operations using b

End

If proc is called repeatedly, and the Bulffer, b, is not killed when proc exits, then you have a
memory leak: each time another buffer is made, memory is taken that is never given back to the
system

There are two different ways to avoid the problemin the example above:

1. Make the Buffer once only, say inyour init procedure, and then use it wherever it is
needed.

2. Create atemporary buffer object in the procedure and remove it after you have used it.
See here for more detalils.

Garbage scanner

Y ou can detect if you have a memory leak by using the 'Garbage scanner' built into Venom. This
will detect any memory that has leaked from the system, and also tell you whet the leaked blocks
where, if possible. This can help you find the leak and solve it.

This atypical output showing lost buffers. The unknown blocks are also part of the buffers but
the system wasn't able to identify them

© 2018 Micro-Robotics Ltd

D: Robust Applications 199

36 bytes at $6400096C. Buffer?
264 bytes at $64000998: <Unknown>
36 bytes at $64000AA8: Buffer?
264 bytes at $64000AD4: <Unknown>

To find out more about the Garbage Scanner and how to use it see the Venom2 Help File.

Code image validation

It is possible (though very unlikely) that when you download the Venom2 Language and
Operating System into your VM2, thet the code gets corrupted.

When we release a new version of Venon2 we include a system checksum to validate the code
image. Thisis available using Oper at i ngSyst em Checksumand . Val i d messages.

To make sure your Venom2 operating system has been downloaded correctly you might include
alire like this in your application code'si ni t procedure:

To init
If system Valid
[

]

El se

[

go to nornal operation...

Print To display, "Corrupt OsI'"
;... and any other actions you m ght need to take.

]
End

Watchdogs

A watchdog is a hardware device that has control of the reset input to the controller. 1f the
program does not 'kick' the watchdog every so often, then the watchdog will reset the controller.
Thisisto halt and restart a crashed microcontroller.

Inthe VM2 controller, the Venom task-scheduler kicks the watchdog. This is sufficient to guard
against most bugs in the Venom language, or processor crashes. However, the highest security
applications may require extra watchdogs at the application code level. Y ou can write these
using Venom code.

SUMMARY

® Check your code for memory leaks.
¢ Always'ROM' your application code.

© 2018 Micro-Robotics Ltd

200 Appendices

¢ Something like the following lines should appear near the start of any Venom?2 application
released into the field. Some of these will have been taken care of by the defauit startup
procedure — List startup to find out.

system ErrorAction :=1 ; Restart on errors (taken care of
in the default startup procedure)

Serial . Escape : = Fal se ; Di sabl e CTRL-C Break

© 2018 Micro-Robotics Ltd

E: ASCII Character Set 201

E: ASCIl Character Set

The following table shows all of the characters in the ASCII character set, giving the decimal
character number, the hexadecimal character number and the character itself. 1nthe case of
unprintable characters, either a description is given, or the box is left blank.

Note: although character 13 is called CR in ASCII, Venom?2 uses the character 10 for the
Carriage Return character internally, to maintain consistency with as many other systems as
possible.

© 2018 Micro-Robotics Ltd

Appendices

125 7D ?201 Micro-Robotics Ltd

202

O olo | |0 |« |O|le |- || |—|E|les|o|la|lo|s|n | |53|>|3 |x|[>|N|—|—
S lo|dgd o |m TI8lgisIglzalg|ea|@|l2l¥|ysleldlle|r|le|leln ||l |L |o|@ m
T |® |6 |6 |© © |®© | |®|®|c |l |® || |6 |RI|IR|IN|KI|IKIKIRI|IKIRI|IRIR|IFK|IK ~
glelnlolalglglalglgs|glgs|sIglgs|g 2|0l |vlelsg|alglglN|els ©
CIF I8 |8 |ea|g|lga|e|od|a|loa|lg|ald|a|ald|a|ald|a |29 |9 |8 |V |8 |8 | N
A S g jag(lalalala|jlagjlalald|la|ajalalda|lda|a9|aladlqa|d|a |9 —
m @<« |lm|jOo|ajw|u o]z |o|n|x|a|=|z|0o|la|olx|n |- [D]> |3 |x|>|N|=|~|—|<
S lo|a o |m ISIele|s |9 |9 |S |9 QY IglzlyIleIzlgls g |Ig S |@|Q |8 |u
T [T | | | < < |¥ |9 |F | |F|F|F || |F|P || |1 OB |(b (b |v|v|v|®|b |0
glgiglgIs|glglelg|e|elrgeloin|elelglg|dIgls IgslgsIsIg g igla s (2|
2 © |© | |® | RIRINI|IKIRINIRIKIR|R | |o |0 | ® |® |0 |® |0 ||| |6 |
W % _. Qe || - |~ |x |+ I ~ |lo|lda |l |®m |t v |o |~ |0 | I VAR BT N
lo|ld|la ot v |lo |~ |0 |0 SRy gI2IvIglsIglgsInIg (g |S|9| 9|9 |W
T |& |[¥ |8 |[d |[Q &[] |8 |§ & SO s U I S G T 5 B Y B RV »|®m || ool |o|®d | @ o
gl lgisigslgInIgIg|2ld|9l2Ig|v|lels|g2|2|g|zlv|laIslslgsIn|g|g|g e |y
S| o » oo o o|F|<|F | < |[¥F | |F | |P || |1 O B |b|b|;d|@ |6 |0
L
m — v @ Z LL
- o W | L w | & O O
O |2 m m ([- L 1O X X
O |4 |N |[m n (o [~ o |O n O (O (W
Wv o |ld | |m |t |w|o|~|o|lo|l<|oa|Ooowit (982 |(YI2I1F5I8I18I5I9(|2|5|2 |8 |84
= |~ © |~ N © |~
Ww O |ld | |m| g |w|o|~|olo @399 13B(19I5I8I2I18I8IN8|8 (3818 K288

E: ASCII Character Set

203

© 2018 Micro-Robotics Ltd

204

Appendices

F: Optimisation

Optimisation is the automeatic or manual alteration of code to make it run faster, occupy less
space, or use less electrical power.

Code Optimisation
The Venom compiler autormetically optimises the Venom code you write.

Because Venon2 is semi-compiled, the size of the code it produces is typically much smaller
than either assembly code or fully compiled code.

Venom also does some more explicit optimisation. Currently this is limited to constant folding.
Constant folding is where an operation on one or more constants may be calculated at compile
time rather than at runtime. For example, the first line could be written as the second, but the
first line may be more maintainable.

a:=5* 4

a:= 20
When Venom compiles these lines of code, it is able to notice the possible optimisation, and
compiles as if the second line had been written.

Constart folding is performed on most operations thet involve only constants. In order to give
the compiler the best chance of folding an expression, enclose the operations in parentheses:

5* a* 4 ;will not be folded (the conmpiler's not that
cl ever!)

5* 4* a ;m ght be...

a*5*4 ;mght be...

a* (5* 4) ;definitely will be.

Power saving

The Venom operating system autometically uses the HALT instruction on the host processor, if
there is a suitable one available. The controller is put into a power-saving mode if there are no
tasks requiring any processing power. Interrupts are not affected as they automatically wake the
controller fromits HALT instruction.

In order to make best use of this, make your tasks wait if they can do so without compromising
the responsiveness of your code.
For example you could wait for a digital input like this:

Whi | e di g. Not Asserted []
However if you don't mind being up to 10mS late in the detection of the input you can save
power by using something like

Whil e dig. Not Asserted [Wait 10]
The Wait command will let the controller idle while it's waiting.

Await will also allow the controller to deep while it's waiting, with a minimal loss of

© 2018 Micro-Robotics Ltd

F: Optimisation 205

responsiveness.
Awai t dig. Asserted

All commands and messages in Venom that are waiting for an interrupt or for a millisecond time
of any sort will alow the controller to idle. Other things will also alow idling.

Exanmplesare Wi t , Every, Swap, seri al . Get , keypad. Get, any_obj ect. Lock...

Y ou can check the effect of running various bits of code if you have a power supply with a
current meter onit.

Defined logic levels

There are more power savings to be had by making sure that every 10 pin onthe VM2 is pulled
to a defined logic level. This is most important if you are have a very power sensitive application,
especially one that uses stop mode.

The operating system message sy st em Low will set al uninitialised 10 pins to the state 'input
pulled low' to make sure every uninitialised 10 pinis pulled to a defined state.

Usually, the best time to call thisis at the end of your init procedure, after all the 10 objects have
been defined.

(Your init procedure is called by the defauit startup procedure).

© 2018 Micro-Robotics Ltd

206 Appendices

G: Startup Sequence
The diagram shows what happens when Venon?2 starts.

Internal init
& Checks

RUN MODE/\PROG MODE

Clear Memory Y NS? __

Application
in ROM?

Wipe main RAM

N, S

Wipe main RAM|| || Validate code Report RAM size Validate code
in RAM* in RAM*
Read App o
From ROM Application

in ROM?

I

Read App
From ROM

Create Default
Startup etc.

Clear Memory was
'S' for 'Skip Startup'?

Create some

Run 'startup’ ...
o * Default Objects

... and applicatio

Command line*]
>

*'Validate code in RAM' means check that the controller's heap-memory, global variables etc.
contain valid data. If not, then reset them

** All routes through the flow diagram end up at the command line, unless startup never returns —
i.e. the application code loops forever. Application prograns in general should never terminate
to the command line.

© 2018 Micro-Robotics Ltd

Not using VenomIDE 207

Not using VenomIDE

Thisisthe getting started guide for users who can't use the VenomiDE development tools
for Windows, and shows you how to use a terminal emulator and text editor to program
your Venom-based controller.

You might need to use this method if you have a MAC or UNIX computer, or if you are
using a computer that doesn't have VenomlIDE installed.

Unlike most application development systemns, this one runs on the target hardware in real time.
This has many advantages when it comes to learning the language and debugging.

To start learning about the Venom language you need to be able 'talk’ to the controller running it.
This is normally done over an RS232 serial link using your own personal computer - your
computer will need to run aterminal emulator program. Suitable terminal emulators are often
available for free.

What you will need

In order to start learning about Venom, you will need a minimum of:
* A Venom-based controller, suchas VM2

* You may need an application board for the controller

* A suitable power supply

* AnRS232 lead to connect the controller to your computer, or to a USB-Serial converter on
your computer

* A PC running terminal emulation software

Micro-Robotics supplies starter kits containing all you need, except the personal computer and
the terminal software.

Connecting it all together

The exact details of connecting the controller to a personal computer are given in the Getting
Started Guide for the particular controller configuration you have. The Getting Started Guide
will take you as far as seeing the Venom startup message:

VM2 Control Conputer running VenonR at 72MHz

Version 2011 02 10

Copyright 2008-2011 M cro- Robotics Ltd.
Cl ear RAWR?

Asthisis the first time you have used the system, typeinaY. Thistells the controller to clear its

© 2018 Micro-Robotics Ltd

208 Appendices

memory.

The cursor will be positioned just after an arrow: - - >. This arrow is called the 'prompt and
means V enom is waiting for your instructions.

Simple Commands

Try pressing Carriage Return a few times. 'Y ou will notice that VVenom replies with a prompt on
anew line. Thisisaquick way of checking that Venom s talking to you.

Now try typing the following (press Carriage Return at the end of the line). Y ou type the text
after the - - > prompt.

-->Print "hell 0"

hel | o-->
Venom responds to the command by printing the string you gave it back to your terminal
window.

Now try the command below. Don't forget to type the dot between the two words.

If you meke a mistake in your typing, then you can use the Delete or Backspace key to remove
the characters you have entered.

-->l ed. On

-->

To see the effect of this command you will need to be able to see the LED on the controller.
The LED on the board will light up. 1f you repeat the command using the word Off instead of
On, the LED will be turned off.

Objects

An object is a part of the Venom language that will control and monitor a device in response to a
fixed set of messages. 1nthe example above, LED was the object responsible for controlling the
LED device on the controller. On was the message sent to the led object. Thedot (.) tells
Venom that a message follows. Objects will be covered in much greater detail later. For now it
is enough to know whet it looks like when an object is being used.

Incidentally, you don't have to type commands in exactly as our examples — when accepting
commands, Venomis case-insensitive.

The Command Line

The command line is the text that you type in at the - - > prompt. The term will be used
frequently throughout this manual.

© 2018 Micro-Robotics Ltd

Not using VenomIDE 209

Errors

If you made any mistakes in the examples above, Venom probably issued an error message. In
case you haverit seen an error message yet, type in led.Onf. 'Y ou will see:

-->| ed. Onf

NNAN

Syntax Error: Expected nessage nane.
Command | i ne not executed.
-->

Venomissued a Syntax Error message, meaning it didn't understand the command. The
offending line is listed together with a pointer to where Venom thinks the error is (the M4
characters), and the reason Venom didn't like it.

Syntax errors like the one above will show up when your code is downloading. There is another
type of error that can occur — runtime errors. These will be dealt with later.

Simple Procedures

The commands shown above were very simple. To perform more complicated tasks,
commands may be grouped together into procedures. Try the following line, taking care to
include the dots and spaces.

-->To blip led.On Wit 1000 led. O f End

Pr ocedure defined
-->

The keywords To and End tell Venom that the commands in-between should be treated as a
single command (or procedure) called blip. Incidentally, the Wait 1000 command tells Venom
to do nothing for 2000 milliseconds.

Try issuing blip as a command:
-->blip
-->

The LED should turn on for one second then turn off again. The new prompt will only appear
once the procedure has finished.

Blip could also be issued as a command from within a procedure. The following procedure
‘calls blip once, waits for a second and then calls blip again. Try entering it and then typing
double.

-->To double blip Wait 1000 blip End
It is not necessary to enter procedures on a single line. The blip procedure could have been
entered as below, or in any form where the spaces are replaced by carriage returns.

© 2018 Micro-Robotics Ltd

210

Appendices

-->To blip

02> ed. On

03>Wai t 1000

04>| ed. O° f

05>End

Procedur e Defined
-->

Y ou will notice that the prompt is different during entry of the procedure. This tells you that
Venomwill not act on the commands you type immediately, and aso lists the line numbers of the
procedure.

Listing Procedures

Listing back of procedures is not fully supported. If you type List blip you will get a short
summary of the procedure, somewhat like this:

-->List blip

;To blip

: No source list [36 bytes @260532]
: End- - >

Editing Procedures

Simple procedures may be typed in at the command line as shown above. When procedures get
larger it is useful to be able to edit them.

This is best done with a text editor. Suitable text editors are usually available for free.

Type the code of the procedure into your favourite text editor, and meke sure it's what you warnt
it to look like. Then Cut-and- Paste the text into the window of your terminal emulator. Thisis
equivalent to typing in the procedure, but much faster.

Most Windows® programs allow the use of the shortcut keys Ctrl-C and Ctrl-V for Cut-and-
Paste.

Any syntax errors in the code will be indicated as the text downloads, and you can go to the
editor to correct them.

PROGRAM command

If you want to download one or more whole files full of procedures then it helps if you put two

specia commands around all your code. Put them on the first and last lines in the file if you can.

Note that you can fill in the name of youfile if you like (or just use any name you like).
PROGRAM "your _code.txt" ; On the first line of your file.

(all your procedures)

© 2018 Micro-Robotics Ltd

Not using VenomIDE 211

PROGRAM End

Now you can download the whole file or files using Cut & Paste, or by other means.

Using PROGRAM . . PROGRAM End makes the download easier to understand, and will make
error reports more meaningful: the file and line number of the error will be shown.

Help

Y ou can download the Help Files for the VVenom language from our website - they are available
in Windows Help format and PDF.

Venom? aso has a simple on-board help system. This allows you to interrogate the runtime
system. It may not always have the information you are looking for, but it can be useful. Try this:

-->Hel p | ed
It is the OnBoardLED. Try PRINTing it for nore info.
-->Hel p put
"Put' is a nessage nane.
-->
The second example is a useful way to check that a word you wart to use is not already
reserved by Venom.

In Venom, printing something will often give you informetion about it. Systemis a predefined
object that represents the Venom system. For example:

-->Print system

Synbol table 61 bytes

9 d obal variables

108880 of 110594 bytes free in heap (biggest block 108490)
NV RAM area 0 bytes (0 unused)

SUMMARY

* |tispossble to programa VM2 controller without using Venoml DE - just using a terminal
emulator and a text editor.

® You can issue commands on the command line and enter simple procedures.
® You can download your program files using Cut and Paste from a text editor to aterminal

emulator.
What next?
Y ou should now go onto read the next chapter of VVenom language tutorial, Repeating and
Deciding.

© 2018 Micro-Robotics Ltd

212

Appendices

© 2018 Micro-Robotics Ltd

Index

Index
_H -

#DEFINE 74
#IF, etc. 77
[20

_A -

ABS operator 20
Absolute value 20
Accessibilty 175
Active variables 45
method 170
Addition 20
AlphalLCD object 122
Analogue object 120
AND 84

AndAlso 23
Application
deweloping 63
protect against erasure 160
Arithmetic 20

Array 25
RAM copy of 143

variable data 144
Array object 142
AS FLOAT 22
AS INT 22

ASCII
character set 201

printing values 29
Assignment 16
Atomic operations 98

Attempt to lock object held by dead tas'

AWAIT 14

B -

Becomes equal to 16

BEEP 29

Binary 80

Bitwise operators 84
Blocks

of program statements 12

Boolean operators 23
BREAK 15
stop your program 10

Buffer 25
text 139

Buffer object 136

Calendar 145, 149
Calling

procedures 34
Carat 21

CASE, SELECT 14
CATCH 68, 197
Catching errors 68
Character
constants 81

Checklist

dewelopment cycle 192
Choosing 14

CHR 29

Class 163

user, inheritance 171
Clock

realtime 145
system master frequency, setting
Code

application, fles 53
Colon operator 29
Commenting code 35
Conditional compilation 77
Constant

folding 75
Constants 18
named 19

Constants - quoted strings 18

213

162

© 2018 Micro-Robotics Ltd

214 Venom?2 Tutorial

Cosine 21
CR 29

Creating
objects - howto 42

objects - whento 43
Ctr-C 10, 197

D -

Data
structure 163
Data hiding 175

Data structures
array 142

buffer object 136
string object 133
text buffer 139
Date

altering 152
calculator 149
limits 148
setting 151

DateTime object 149
Day of the week 150
Deadlock 108

Debugging 64
comments - use of 64

finding source of runtime errors

HELP 66
listing tasks 66
PRINT - use of 64
DEFINE 74

Deleting
objects 46

procedures 41

Deeloping
an application 63

Development

checklist 192
Dewvelopment environment 53
Die message 46

Digital object 117

DIV 20

Divide 20

Division 20

DO 13

Downloading

code 53
-E -

Editing

code 53
ELSE 12
Embedded text 81
END

of procedure 33
EOR 84

Equal to operator 22
Equals 16

ErrorAction 68, 159, 197

Errors 67
catching 68

during Initialise of user Class 183
protecting against 197

reports 67

reset on 68, 159
runtime 67

runtime - locating 65
syntax 3

Escape
sequences - characters

stop your program 10

Events
timing of 194
EVERY 11

Exceptions 67, 69
tidy up after 72

Exclusive OR 84

Exit
from procedure 37
Exp 21

Expressions 19
object result 91

pointer 86
sending message to

“F -

FALSE 22
FAQ 193
FIFO 136
File 25

File extension

92

83

© 2018 Micro-Robotics Ltd

Index

File extension
Mmoo 3

Files 195
application code 53

FILO 138

Flash memory
protecting your application

FLOAT 22
Floating point numbers 18
FOREVER 10

Format
floating point printing 30
integer printing 29
string printing 31

Functions 37
Greater than 22

“H -

Handling errors during Initialise
Handling exceptions 69
Help 7
Hexadecimal 80
Hiding

data 175

I2C Bus 46
AlphaLCD on 122

analogue channel numbering

analogue objects 120
Digital channel numbers
Digital objects 117
Keypad on 124

printing 90

Venom channel numbers
IF 12

Indentation 13

INDEX 11

INDEXO 11

Inheritance 171

init 43

example 50

183

120

118

115

Initialise method
errors during
INT 22
Integers 18
Interface
user 194
Interface testing
INV 84
IsFalse 23

K -

Keypad
InputBuffer

number entry
object 124

Keywords
printing 96

L -

Lazy evaluation
LCD

alphanumeric
LED 51

object 131
Less than 22
LIST

macros 75

names 17

procedures

TASK 60
LOCAL 38

Local variables

183

188

126
128

23

122

40

declaring, defining 38
initialising 38

lifetime 38
Locking 104

critical areas#

111

deadlock 108

ending tasks

implicit 104

incremental

109

105

internal operation 112

non-blocking

objects 104

owner 108

107

215

© 2018 Micro-Robotics Ltd

216 Venom?2 Tutorial

Locking 104
restorative 106

Log 21

Logical operators 23
longjmp() - equivalent 69
Looping

breaking out of aloop 15
DO 13

loop count (INDEX) 11
timed (EVERY) 11
UNTIL 13

WHILE 13

M -

MAC OS 207

Macros 19, 74
creating 74

empty 76
limitations 76
listing 75
nesting 75
redefining 75
removing 75

Magnitude - ABS 20

main
example 50
MAKE 42

Making objects 42
Member types 165
Memory

direct access to 86
Memory leak 92, 198
Messages

primitive 176
sending 44

Method
active variable 170

Methods

defining 168

special, in user classes 178
Minus

unary 20

MOD 20

Mode
program 49

run 50

Modulus 20

Multiple choice 14
Multiplication 20
Multitasking

idling 103
introduction 56
listing tasks 60
local variables 103
locking 104
number of tasks to use
sharing resources 100
signalling between tasks
simple model 61
stating a task 58
stopping tasks 59

synchronising tasks 101

the prompt 59
whentouseit 56

- N -

Names
variable 16
NEW 91, 92
NIL 90

Non wolatile storage 193
NOT (See INV) 84
Not equal to operator 22

Number entry
keypad 128

58

100

Number ranges (integer and floating point) 18

NumberReader object 128

Object
AlphalCD 122

Analogue 120
Array 142

Buffer 136

Buffer, text 139
DateTime 149
Digital 117

Keypad 124
NumberReader 128
OnBoardLED 131
OperatingSystem 159

© 2018 Micro-Robotics Ltd

Index

Object
SerialPort 157

Stopwatch 156

String 133
Timer 154
Objects

creation - how 42
creation - when 43
introduction 42
removing 46
temporary 92
tutorial introduction 115

OnBoardLED object 131
OperatingSystem object 159

Operators
Arithmetic 20
bitwise 84
Boolean 23
logical 23
power 21

Precedence 21
Relational 22
trigonometric 21
type conversion 22
Type query 25
Optimisation 204
Optional parameters 79
OR 84

OrElse 23

_P-

Parameters
message 45

pass by reference 86
pass by value 36
procedure 36

Pausing execution 14

Pointer 86
expressions 86

to a procedure 88
to an object 87
Port

serial 157

Power of operator 21
Power saving 204
Precedence 21

Precision
floats 18

Pre-emptive 98
Preprocessor commands

#DEFINE 74

#IF, etc. 77
Primitive messages 176
PRINT 29

how it works 96
keywords 29, 96
PrintF message 97
redirection 95
PRINT TO (an object) 95
PrintF 97

Printing 29

date and time 146, 151
floats 30

integers 29

objects 90

strings 29

strings - fragments of 31
Private 175
Procedures 32

calling 34

comments 35
defining, simple 33
deleting 41

exiting from 37
held in RAM 35
listing 40

local variables 38
naming 34
parameters 36
pointers to 88
pre-defined 41
recursion 39
returning values from 37

Processing power 98
PROGRAM

not using VenomIDE 210
Program mode 49

Prompt
command line 3, 207

command line, don't allow 50
procedure entry, changing 33
tasks running 59

Protect

217

© 2018 Micro-Robotics Ltd

218 Venom?2 Tutorial

Protect
application code 35, 160

Protected 175
Protected Application Area 35, 160

Prototype
method 185

Public 175

Pulses
generate 194

measure 194

Real time clock / calendar 145
Records
template, using a Class 179

Recursion 39
in methods 185

Redirection 95

of messages 186
Remainder 20
REPEAT 10

Reset
LED behaviour 131

onerror 68, 159
on watchdog 199
operating system message 162

Return
value from procedure 37

RETURN keyword 37
Robust application design 197
Round Robin 98

Run
operating system message 161

Run mode 50
Runtime errors 65, 67

_S -

Seconds

Venom 148
SELECTCASE 14
Semaphore object 111
Sequencing 194

Serial
break 197

Escape Message 197

Serial (communications) 157

SerialPort object 157
setjimp() - equivalent 69
Setting a variable's value 16
Shift left and right 84

Short-circuiting evaluation 23

Sine 21
Sleep - low power 195
Speed

of execution, measuring

196

of VM2 system clock 162

Sgrt 21

Square brackets 12
Square root 21

START - starting atask 58

Startup
procedure 44, 48

sequence 206
STOP - stopping tasks 59
Stop your program 10
Stopwatch object 156

String
constant, concatenation
constants 81

82

constants, on the command line 84

escape sequences 83
handling 193
object 133

String constants 18
Structure

data 163

Style tider 17
Subtraction 20

SWAP keyword 101
Switch

Venom's version of C's switch() 14

System
OperatingSystem object

“T -

Task
atomic operations 98

critical areas 111

ending 109
idling 103
latency 98

159

© 2018 Micro-Robotics Ltd

Index

Task

listing 60

local variables 103
locking 104
manager 98
number to use 58
prompt => 59
sharing resources 100
signalling between 100
simple model 61

starting 58
stopping 59
SWAP 101

swap timing 98

synchronising 101

when to use tasks 56
Temperature 194
Temporary objects 92
Terminal emulator 207

Text
handlers 95

manipulation 193
THEN 12

THROW 68

Time

venom seconds 148
Timer object 154
Timing

events 194

task swap 98
Tips 54

TO
define procedure 33

print redirection 95
Trig functions 21
TRUE 22
TRY 68
Tutorial
new users 3
Type
changing 25
of a variable, querying 25

TYPEOF operator 25

Unary minus 20

UNIX 207

UNTIL 13

User interfface 194
User-defined objects 163

_V -

Validation
OS code image 199

Variables

active (inside object) 45
global 16

initialising 38, 80
local 38

naming 16

Venom Seconds 148

VenomIDE 53
not using 207

W -

WAIT 14
Watchdog 199
WHILE 13

219

© 2018 Micro-Robotics Ltd

	Venom2 Tutorial
	Getting Started
	Part 1:Venom Language Tutorial
	Repeating and Deciding
	Repeating Commands: Repeat, Forever
	Stopping your program
	Timed Loops: Every
	Loop Count: Index, Index0
	Grouping Commands: []
	Making Decisions: If; Else
	Indentation
	Repeating Decisions: While & Do
	Multiple choice: Select Case
	Waiting
	Breaking out of Loops: Break
	SUMMARY

	Variables and Expressions
	Variable Names
	Listing Names
	Integers and Floating-Point Numbers
	Constants
	Named Constants
	Expressions
	Arithmetic Operators
	Precedence
	Type Conversion Operators
	Relational Operators
	Boolean Operators
	Another look at Index
	Changing the type of a variable
	Sets of Data
	SUMMARY

	Printing
	Strings
	Print Keywords
	Printing Integers
	Printing Floats
	Printing a Fragment of a String
	SUMMARY

	Procedures
	Defining Simple Procedures
	Procedure Names
	Calling Procedures
	Comments
	Procedures are not forgotten
	Passing Information to Procedures: Parameters
	Procedures that Return Information
	Exiting Procedures
	Local Variables
	The Lifetime of Local Variables
	Recursion
	Listing Procedures
	Deleting Procedures
	Predefined Procedures
	SUMMARY

	Objects
	Creating Objects
	When to create Objects
	The Startup Procedure
	Using Objects
	Message Parameters
	Active Variables
	What Objects are available?
	The I2C Bus
	Removing Objects
	Trouble shooting
	SUMMARY

	The Startup Procedure
	Program mode
	Run mode
	Don't let your application end
	Example Init and Main
	More on the LED
	SUMMARY

	Your Development Environment
	Tips and Tricks

	Multitasking
	When to use Multitasking
	Without multitasking
	With multitasking

	How many Tasks can I use?
	Starting Tasks
	Keep Tasks Simple
	The Prompt
	Stopping Tasks
	Listing Tasks
	Our Simple Multitasking Model

	Developing an Application
	Debugging
	Print
	Commenting out
	Finding errors in your source
	Listing tasks
	Help
	SUMMARY

	Errors and Exceptions
	Runtime Errors
	Reset on Error
	Catching Errors
	Exceptions
	Tidying up after exceptions
	SUMMARY

	Macros
	Creating Macros
	Nesting Macros
	Listing Macros
	Constant Folding
	Redefining Macros
	Removing Macros
	Null Macros
	Macro Limitations
	SUMMARY

	Conditional Compilation
	Optional parameters
	Further Expressions
	Initialising Global Variables
	Using Hexadecimal and Binary numbers
	Characters and String Constants
	String constant concatenation
	Escape sequences
	Strings on the command line

	Bitwise Operators
	Memory Expressions
	Pointer Expressions
	Procedure Pointers
	Parameters to procedure pointers

	Further Objects
	Printing Objects
	Using Nil
	Object Expressions
	Sending Messages to Expressions
	Creating Temporary Objects

	Further Printing
	Text Handlers and Redirection
	Further Printing Keywords
	How PRINT works
	PrintF

	Further Multitasking
	Task Management Scheme
	Atomic operations
	Processing Power and Task Latency
	Task Objects
	Sharing Resources
	Allocate Resources to Tasks?
	Easily-Shared Resources
	Signalling between Tasks
	Synchronising Tasks
	Sharing other resources

	Idling
	Local Variables and Tasks

	Locking
	Implicit Locking
	Locking Objects
	Incremental Locking
	Restorative Locking
	Non-Blocking Locking
	Lock Owner
	Deadlock

	Ending Tasks
	Critical Areas
	Internal Operation

	The End

	Part 2:Object Tutorial
	Digital
	Digital channel numbering
	Similar Object Types

	Analogue
	Input
	Analogue channel numbering
	Accuracy and Resolution
	Output
	Similar Object Types

	AlphaLCD
	Location numbers
	Similar Object Types

	Keypad
	Getting Key presses
	Keypad InputBuffer
	Updating

	NumberReader
	Creation
	Conversion
	Reading Numbers
	Default Value
	More

	OnBoardLED
	Messages
	Flashing

	String Objects
	More printing
	Finding text

	Buffer
	Diagram
	Data types
	Filling a buffer
	Printing a buffer
	Reading a buffer
	Flushing a buffer
	Other Buffer messages
	How big can a buffer get?

	Text Buffers
	Printing to and from a Text Buffer
	Selecting what to print
	Inserting text
	Finding text

	Array
	Creating Constant Arrays
	Auto fill
	Array of pointers
	Array of strings
	Printing
	RAM copies of Arrays

	Variable Arrays

	RealTimeClock
	Creation
	Clock not set
	Dividing up the time
	Setting the Clock
	Printing the Date and Time
	'Venom Seconds'
	Calibration
	Date Extent

	DateTime
	Creation
	Spurious Dates
	Days of the Week
	Number ranges
	Printing a DateTime
	Assigning a date and time
	Altering the date and time

	Timer
	Other Messages
	Printing

	Stopwatch
	Printing

	SerialPort
	Messages

	OperatingSystem
	Operating System Messages
	ErrorAction
	RunMode
	Debug
	Free
	Protect
	Run
	Reset
	Speed
	PRINT

	Creating new classes
	Member types
	Methods
	Inheritance
	Accessibility
	Class-default messages
	Special methods
	Classes as Records
	Advanced topics

	The End

	Appendices
	A: Development Checklist
	B: How Do I ... ?
	Store Non-Volatile Data
	Manipulate Text
	Enter Numbers on a Numeric Keypad
	Deal with Calendar Dates
	Create User Interfaces
	Time events
	Talk to serial devices
	Generate Pulses
	Measure Pulses
	Measure Temperature
	Sleep with very low Power
	Use Files

	C: Speed of Execution
	D: Robust Applications
	Protecting the Application Code
	Protecting Against Errors
	Serial Break
	Memory
	Code image validation
	Watchdogs
	SUMMARY

	E: ASCII Character Set
	F: Optimisation
	G: Startup Sequence
	Not using VenomIDE

